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Abstract

Local, spatial state-action features can be used to effectively train linear policies
from self-play in a wide variety of board games. Such policies can play games
directly, or be used to bias tree search agents. However, the resulting feature
sets can be large, with a significant amount of overlap and redundancies between
features. This is a problem for two reasons. Firstly, large feature sets can be
computationally expensive, which reduces the playing strength of agents based
on them. Secondly, redundancies and correlations between features impair the
ability for humans to analyse, interpret or understand the tactics learned by
the policies. We look towards decision trees for their ability to perform feature
selection, and serve as interpretable models. Previous work on distilling policies
into decision trees uses states as inputs, and distributions over the complete
action space as outputs. In contrast, we propose and evaluate a variety of
decision tree types, which take state-action pairs as inputs, and provide various
different types of outputs on a per-action basis. An empirical evaluation over
forty-three different board games is presented, and two of those games are used
as case studies where we take a more detailed look and attempt to interpret the
discovered features.
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1. Introduction

Machine learning techniques have been shown to be capable of producing
strong or even superhuman game-playing agents for a variety of games, but
identifying just the key, basic tactics in an explicit white-box format for general
games remains a challenge. State-of-the-art results in terms of game-playing
strength [I), 2, [3L 4 [l 6] [7, 8, @, [10] are, in recent years, essentially always
obtained using Deep Neural Networks (DNNs) [11] as function approximators for
functions such as policies and/or value functions [I2]. Such approaches based on
deep learning require significant computational resources [I3] [14] even for just a
single game, which makes their use prohibitive for research projects that require
scaling up to orders of 1,000 or more different games [I5, [16]. Additionally,
despite numerous efforts, interpretability of DNNs remains a concern [I7), [18].
Explaining game playing agents is crucial if one is interested in using these
agents as teaching aids, rather than black-box adversaries.

As a less computationally intensive alternative, simple linear functions of
state-action features have been proposed [19, 20]. Figure |1 provides some intu-
ition for what such state-action features look like and what they may encode.
This approach generally does not lead to state-of-the-art or superhuman playing
strength, but can allow for meaningful policies to be trained in a wide variety
of games in relatively short amounts of time—for example, by using only 100 or
200 games of self-play |21, [22], in contrast to the many millions typically used
for deep learning.

The set of features discovered and used by these training processes often
contain many strongly correlated or otherwise redundant features, leading to
two issues. Firstly, this can negatively affect the playing strength of the result-
ing agents [2I], because greater numbers of features are associated with greater
computational costs, which reduces the space explored by search algorithms such
as Monte-Carlo tree search (MCTS) 23] 24] 25]. Secondly, strong correlations

between features, and presence of redundant features, can hamper explainabil-
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Figure 1: Three examples of local state-action features that may be useful in various games.
A small square indicates a position that must be empty. Uncovered sites are drawn for ease of
interpretation, but play no role in the feature; they may be empty or non-empty or even not
exist at all. @This feature matches actions that either complete or break a “bridge” of white
pieces, depending on which player is the player to move. @ This feature matches actions
that either complete or break a line of five black pieces. This feature matches actions that

move the bottom-left white pawn in such a way that the black pawn becomes flanked by two

white pawns.
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ity and interpretability. This is the case in particular when directly inspecting
the trained weights of a linear model without accounting for such correlations
[26] 27], but also when using more advanced methods, such as permute-and-
predict methods, for estimating feature importance [28]. Because our set of
features grows dynamically during the training process (as discussed in Sub-
section , and training from self-play inherently leads to a non-stationary
data stream, correlations and dependences between features can change over
time. Some features may not be redundant initially, but become redundant
later on in a training process, or vice versa. This reduces the likelihood that on-
line approaches such as ¢; regularisation [29] can effectively identify and ignore
redundant features.

This paper explores how to address these two issues and extract meaningful,
understandable, and explainable tactics after training such linear models via self-
play, by distilling them into a variety of decision or regression trees. Such trees
will ideally select a relatively small number of key features to represent relevant
tactics for any game under consideration. The primary focus of this paper is on
proposing and evaluating several different ways in which the outputs of decision
trees can be represented, since we find that existing approaches provide limited
support for domains with large and variable action spaces. Note that, in terms
of explainability, the primary interest is in providing useful but basic tactics
for beginners, which could, for instance, be included in automatically-generated
manuals for new (possibly procedurally-generated) or otherwise unknown games
[30]. Automatically generating insights into basic tactics for games may also be
interesting to aid game designers, and can also be used to gain a deeper, more
explicit understanding of what our algorithms manage to learn and in which
situations they fail to learn.

The remainder of this paper is structured as follows. Section [2] provides
background information on work that this paper builds on, as well as other re-
lated work. A discussion of various ways in which different features can have
strong correlations or other dependences is provided in Section Several dif-

ferent types of decision trees, with state-action features as inputs and various
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different output representations, are proposed and discussed in Section [l Sec-
tion [f] describes an evaluation of the proposed techniques, and Section [f] finally

concludes the paper.

2. Background

This section discusses related work on explainability in reinforcement learn-
ing in games, and it provides background information on the considered problem
setting and the training processes used to generate the initial sets of features and
policies. These policies are the ones that are subsequently distilled into smaller,

more interpretable policies using smaller sets of features in the remainder of the

paper.

2.1. Related Work on Explainability in Reinforcement Learning and Games

In related work on explainability in games, and reinforcement learning (RL)
more generally, there is often a focus on (1) local explanations, which are expla-
nations on a per-state basis, (2) explaining value functions, and/or (3) explaining
policies in domains with fixed, and relatively small, avatar-centric action spaces.
For example, Lin et al. [31] focus on generating contrastive explanations for a
model’s preference of one action over another for specific states. Baier and
Kaisers [32] B3] consider the problem of explaining individual decisions made by
tree search algorithms such as MCTS, and Silva et al. [34] generate counterfac-
tual justifications for decisions made by an adversarial tree search for Curling.
Palsson and Bjornsson [35] generate visualisations of the most important parts
of the state representation for the predictions made by a value function on a
per-state basis in the game of Breakthrough, and Hilton et al. [36] similarly
visualise important parts of the state for policies and value functions in the
CoinRun environment. In contrast, the aim in this paper is to extract general,
simple tactics that can be explained to humans for general use throughout an
entire game (or substantial portions thereof).

Coppens et al. [37, B8] and Deproost [39] distill trained policies into var-

ious forms of decision trees and rules, which can lead to local (state-specific)
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as well as global (game-wide) explanations of policies. These were evaluated
in environments such as the Mario AI benchmark, Ms Pacman, and Enduro.
Other commonly-used environments in work on explainable RL are CoinRun
[36], Lunar Lander, Cart Pole, and Mountain Car [40, [3I]. These are all envi-
ronments with fixed and relatively small action spaces, where actions can easily
be labelled and understood when used as outputs for a classifier. These are
often actions such as “left”, “right”, “jump”, and so on, which are typically used
to control a single avatar. In contrast, this paper considers (board) games with
significantly larger action spaces, where the subsets of the action space that are
legal can also vary from state to state. Similar approaches, where all possibly
unique actions are enumerated as potential target classes for a classifier, quickly
lead to decision trees or rules that become difficult to understand when they
have to distinguish between hundreds or thousands or even more distinct target
classes.

McGrath et al. [4I] describe an extensive analysis of the state-of-the-art

Chess engine of AlphaZero, attempting to gain insight into which human-understandable

concepts it learns, and when it does so throughout its training process. The ma-
jority of this analysis assumes that deep, expert human knowledge is already
explicitly available (to actively probe the network during training for such con-
cepts), and relies on massive amounts of self-play data for a single game. Neither
of these are assumed to be available in this paper. Interestingly, their analysis
suggests that AlphaZero tends to learn tactical skills before it learns positional
skills. This may be an artifact of how the training process (based on the use
of tree search in self-play) works, or may be an indication that learning local
tactics is inherently easier than, or a prerequisite for, learning global strategies.
This intuition is one of the reasons that, given the assumed computational con-
straints and requirements for extremely short training runs in this paper, the
focus is placed on learning policies based on local patterns, rather than functions

such as state-value functions, which operate on a more global level.
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2.2. Markov Decision Processes

This paper uses the standard formalism of Markov decision processes (MDPs),
as commonly used in RL [12] to formalise the problem setting. An MDP is de-
fined by a set of states S, a set of actions A, an initial state sy € S, and dynamics
P such that P(s',7 | s,a) denotes the probability of transitioning into a succes-
sor state s’ € S and obtaining a real-valued reward r, when selecting an action
a € A from a current state s € S. The set of legal actions may be restricted
depending on the current state, and A(s) C A is used to denote the actions
that are legal in a state s. The behaviour of an agent is typically described as
a policy m, such that 0 < 7(s,a) < 1 denotes the probability that the agent
selects an action a € A when it is in a state s, and > 4., 7(s,a) = 1.

Note that the standard MDP formalism applies to a single agent, but the
games considered in this paper are actually environments with multiple (typi-
cally 2) agents, who often have opposing objectives. This is important to take
into account when designing self-play training algorithms to train policies ,
but in this paper it is assumed that such policies have already been trained [21].
Given this assumption, it is safe to use the standard MDP formalism throughout
this paper, implicitly assuming that any influence of other agents has already

been absorbed into the dynamics P.

2.8. Spatial State-Action Features

In previous work [19, [20], we proposed a formalisation for spatial state-action
features that allows for applicability to a wide variety (board) games—essentially
any game that involves 2-dimensional, discrete areas, with spatial semantics
having some degree of relevance to game-play, is supported. For any given
state-action pair (s,a), where s denotes a game state and a an action that is
legal in s, such a feature tests whether a certain pattern (or configuration) of
requirements in the local area around the action a matches in the state s. For
example, a feature can test whether the destination of a move is next to a
friendly or enemy piece, whether it moves away from a position next to the edge

of the board, or any other combination of one or more such conditions for one
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or more positions specified relative to positions affected by a. Several examples
are depicted in Figure

Similar types of local patterns have also been used in several game-specific
engines, for games such as Breakthrough [42], Chess [43], Go [44, [45, 46], [47], [48],
and Hex [49, [50]. The work described by Soemers et al. [20] focuses on formal-
ising such patterns in a way that is compatible with many different games—
irrespective of the particular board geometry used [5I]—and an efficient imple-
mentation for pattern matching without game-specific domain knowledge in the

Ludii general game system [52] [53].

2.4. Feature Discovery and Policy Training

In previous work on the use of patterns in games such as Go, it is relatively
common to exhaustively enumerate all patterns of a given size (e.g., all 3x3
patterns centered on the intersection under consideration) [54l [55] 48], [56] [57].
When considering games with arbitrarily complex board geometries [51] or sig-
nificantly greater numbers of types of distinct pieces than in Go (e.g., twelve
in Chess versus two in Go), it is no longer feasible to exhaustively generate all
such patterns even for a small size.

For this reason, an approach is used where discovery of new features and
training of policies using those features are intertwined in a self-play training
process [2I]. This starts with a smaller set of simple atomic features, and new
features are iteratively constructed by combining existing features (or rotated
or reflected instances of them) into more complex compound patterns [58| 59,
60, 21]. This process is depicted in Figure The atomic features that the
process starts with are features that only have a single requirement for the game
state data, in addition to any requirements they may have for action data. For
example, an atomic feature may require a single site (relative to some reference
point) to be occupied by a white stone.

Given a (dynamically growing) set of features, a parameterised policy g is
trained from self-play by learning a vector of parameters 8 = |6, 6,,... 79n71} .

Such a vector contains one parameter (or weight) 6; for every feature ¢; in a set



Figure 2: Example of how new features are generated by combining instances of existing

features. On the left-hand side, we start with three instances of atomic features. The top and
middle instances are first combined into a new feature that matches actions that place a stone
in between two white stones. This more complex feature is subsequently combined again with
another feature, finally resulting in a feature that matches actions that complete or break a

line of four white stones.



185

190

of n features. Whenever new features are discovered and added to the set during
a training process, new parameters—initialised to a value of 0—are appended
to the parameter vector. Features ¢; : S x A(s) — {0,1} are binary features
that take values of either ¢;(s,a) =0 or ¢;(s,a) =1 for any input state-action
pair (s,a). A boldface ¢(s,a) = |po(s,a),d1(s,a),.. ,7q§n_1(57a):| is used to
denote a vector of such feature values for a state-action pair (s,a). The dot
product between a feature vector and a trained parameter vector produces a
logit zg(s,a) = @' ¢(s,a). For any given state s, the probabilities g (s, a) of all
the legal actions a € A(s) of the policy are then computed by a softmax over

the logits, as in Equation [I}

ro(s,0) = exp (zg(s,a)) : (1)
Za’GA(s) exp (zo(s,a’))

The policies considered in this paper—which are to be distilled into decision
trees—were trained in a similar way as the policies in AlphaZero [5], which
means that they were trained using a cross-entropy loss to mimic the behaviour
of a search-based agent. This may be viewed as a form of multinomial logistic
regression, albeit with a non-stationary target distribution, the performance of
which is meant to improve in terms of playing strength as training progresses.
For further details on the setup of the self-play training processes used to train

initial policies for the experiments in this paper, we refer to our earlier work

[20].

3. Feature Dependences

Sets of features constructed and used as described in Subsection 2.4 fre-
quently contain many subsets of features with strong correlations or depen-
dences between each other. This can be considered problematic for two reasons.
Firstly, if there are many redundancies in the set of features, computing poli-
cies may be slower than necessary, which harms playing strength of tree search
algorithms guided by such a policy [21]. Secondly, understanding, interpreting,

or analysing the importance of features based on their trained weights becomes

10
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(a) (b)

Figure 3: Two example features that may or may not be equivalent depending on the game
they are used in. Both encode, for grids of square cells, a diagonal move by a white pawn,
but @ has the additional restriction that the destination must be occupied by a black piece

(of any type, indicated by a circle).

error-prone when features are not mutually independent [26] 27, 28]. In this
section, several different ways in which (strong) dependences between features

may exist are distinguished.

3.1. Game-Agnostic Dependences

For some pairs of features ¢; and ¢;, i # j, we have that one of them being
(in)active by definition—regardless of which game is being played—implies the
other also being (in)active, i.e. (¢i(s,a) = 0) = (¢;(s,a) = 0) or (¢;(s,a) =
1) = (¢;(s,a) = 1). Consider, for example, the different features depicted in
Figure[2] By definition, whenever a feature that was constructed by combining a
pair of other features is active, its constituents must also be active. Conversely,
whenever a simpler feature is not active, any compound feature with the simpler
feature as a constituent also cannot be active. Note that these are just examples:
there may also be similar implications between features that are not each other’s
constituents. For example, a feature that requires at least one friendly adjacent
piece being active will always imply that a feature requiring at least one non-

empty adjacent position is also active.

11
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8.2. Emergent Dependences from Game Rules

Some pairs of features ¢; and ¢;, ¢ # j, may have strong correlations or
implications between each other only in certain games, as a result of such a
game’s rules. For example, in the game of Chess, pawns are only allowed to
move diagonally if that results in a capture of an opposing piece. Hence, in this
game, a feature that matches diagonal pawn moves correlates perfectly with a
feature that matches diagonal pawn moves towards an enemy piece. This is
depicted in Figure[3] Different games may also allow pawns to move diagonally
towards empty positions, and in such games these two features would no longer
be equivalent. Breakthrough is an example of such a game. These features
would still have a strong dependence as described in the previous subsection,
but may not correlate perfectly in all games.

A related issue is that some features have extremely low or high marginal
probabilities of being active, and are therefore uninformative, as a result of a
game’s rules. For example, in the game of Tic-Tac-Toe, features that require
the destination of an action to be empty are always active because this is also
a requirement for any move to be legal in this game. Similarly, a feature that
requires the destination of an action to be within two steps of an edge of the

board is always active because this game is played on a grid of 3x3 cells.

8.8. Emergent Dependences from Policies

Finally, there can be dependences between features that are not necessarily
due to the particular game being played, but rather due to the policies used to
generate playing experience in them. By design, the self-play approaches used
to generate experience for feature discovery and weight training |2, 2I] have
some degree of exploration—for diversity in generated experience—but also a
clear bias towards selecting actions that are considered to be strong by the agent
used in self-play. This causes the distribution of states that are experienced—
and therefore also legal actions that are observed—to be highly non-uniform.
This can result in certain pairs of features very frequently or very rarely co-

occurring in practice, even if perhaps they would not when observing gameplay

12
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(a) This feature matches ac- (b) This feature matches ac- (c) This feature matches ac-

tions diagonally adjacent to a tions orthogonally adjacent to tions at two orthogonal steps

white stone. a white stone. from a white stone.

Figure 4: MCTS-based players have a strong tendency to open games of Tic-Tac-Toe in the
centre of the board. Therefore, it is highly likely for every action available in the first turn
of the second player to match either the feature depicted in @ or the one in @ If the first
player opens in a corner, the second player also has legal moves in their first turn that match

the feature depicted in but this is rarely observed in self-play between MCTS agents.

from different agents.

Consider, for example, the game of Tic-Tac-Toe, in which players take turns
placing pieces on a 3x3 grid, and the first player to complete a line of three
wins. MCTS-based players almost always open the game by playing in the
centre of the boardﬂ This causes certain features (see Figure [4)) to have very
high or low marginal probabilities of matching any legal actions in the first turn
of the second player, which could be different if other openings were observed
more frequently. These high or low marginal probabilities also lead to high or
low co-occurrences with other features that may be less affected by the different

openings.

3.4. Discussion

The subsections above describe various types of dependences between fea-

tures. Each of these can lead to situations where the probabilities of being

I Players based on algorithms such as a3-search are more likely to also open in one of the
corners, but MCTS tends to have a preference for the centre of the board because this has a

greater probability of leading to wins against random players.

13
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(in)active for some features can be predicted with high (sometimes perfect) ac-
curacy based on the activity of other features. This can lead to redundancies in
sets of features, where some are “unnecessary” in the presence of others. In terms
of computational costs, this is not a major issue in the case of game-agnostic
dependences (Subsection, because pattern matching is performed using the
highly efficient “SPatterNet” approach [20], which already leverages such re-
lations to speed up pattern matching. More specifically, this is a technique
that aims to optimise the order in which propositions are evaluated for pattern
matching with a larger set of features, and it can automatically account for the
game-agnostic relations in this process as listed in Table [} However, the other
types of dependences cannot be accounted for without domain knowledge of the
particular game being played or the agents that are playing, which means that
redundancies due to these other types are harmful in terms of computational
efficiency.

In terms of understanding or explaining policies, it is also important to
keep these dependences in mind. The single weight of an individual feature,
without accounting for features that are likely to co-occur or likely not to co-
occur, and their weights, does not necessarily give a good idea of the strength
of actions for which that feature matches. Furthermore, especially in the case
of perfect correlations, there can be different features that provide equally valid
explanations in theory, but where some may be subjectively viewed as more
representative than others. For example, the two features depicted in Figure
could form equally valid explanations for the idea that using a pawn to capture
an enemy is a strong (or weak) move in Chess, but we imagine that humans may
prefer the rightmost feature since it more explicitly also visualises the enemy

piece.

4. Decision Trees of State-Action Features

Since decision trees are generally considered to be inherently interpretable

models [27), [I7], and can also be used to select the most important features

14



Proposition a Propositions proven by a

x is empty T is empty
x is not owned by p (for any p > 0)
z is not piece i (for any 7 > 0)
z is not empty  is not empty
x is owned by p z is owned by p
x is not piece i (for any i not owned by p)
x is piece i (if ¢ is the sole type owned by p)
 is not empty
x is not owned by p  x is not owned by p
x is not piece i (for any i owned by p)
T is piece ¢ T is piece i
 is not empty
2 is not piece j (for any j # i)
x is owned by p (where p is the owner of 7)
z is not owned by p (for any p that does not own i)
x is not piece ¢ z is not piece ¢

2 is not owned by p (if ¢ is the sole type owned by p)

Table 1: Game-agnostic relations between propositions in features that the SPatterNet ap-
proach |20] for pattern matching can automatically account for. Propositions a in the left
column, when true, always imply the matching propositions in the right column. In every
proposition, z denotes a site (i.e., a cell or an intersection of a game board). Redundancies
in feature sets due to these relations are therefore not harmful in terms of computational

efficiency. Table reproduced from [20].

15
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[61], we look towards them for feature selection (with the ultimate goal of re-
ducing computational overhead whilst preserving strong policies) as well as the

extraction of explainable tactics.

4.1. Decision Tree Structures

When using function approximators for policy training in games or RL, it is
customary for these functions (often neural networks) to take a representation
of a state s as input, and produce one logit z(s,a) as output for every action a
that may possibly be legal in any state s [I2]. Resulting vectors of logits are
transformed into discrete probability distributions over the actions by applying
a softmax (plus invalid action masking [62] in games where some actions are
sometimes illegal). When such policies are subsequently distilled into decision
trees or rules for explainability, these are typically trained as classifiers that
again use representations of states s as input (splitting on features of states), and
produce probability distributions over all actions (which must all be explicitly
enumerated as potential target classes) as outputs [37, B8, 39]. An example of
what such a decision tree could look like is depicted in Figure[f] In the example
case of Tic-Tac-Toe, every leaf node outputs a probability distribution over nine
possible actions (some of which may be illegal depending on the input game state
s). In more complex games such as Chess or Shogi, the output distributions
would have to defined for thousands of different elements [5].

The input and output structures for the original (linear) policies considered
in this paper are different, since they take a representation of a state-action
pair (s,a) as input, and produce only a single logit for that same (s,a) pair
as output. Hence, the most straightforward way to distill such a policy into
a decision tree would be to build a regression tree that takes representations
of state-action pairs as input (splitting on state-action features), and produces
individual logits as outputs. An example of such a tree is depicted in Figure[] In
the remainder of this subsection, advantages and disadvantages of this approach,
as well as several other possibilities for structuring (in particular the outputs

of) decision trees, are discussed.

16
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Figure 5: Example of a handcrafted policy for Tic-Tac-Toe, modelled as decision tree that takes
states as inputs and produces probability distributions over all possible actions as outputs.
This decision tree can recognise two particular cases of winning actions for the white player,

but otherwise recommends a uniform distribution over all actions.
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[State—action input (s, a)]

!
O

*
False True
Q [Output logit = 3.()]
*
False True
[Output logit = O.Uj [Output logit = 3.0}

Figure 6: Example logit regression tree for a handcrafted policy for Tic-Tac-Toe, modelled as
a regression tree that takes state-action pairs (s, a) as inputs and produces a single logit for
such a pair as output. This regression tree can detect actions that complete any (assuming
local rotations and reflections of features are used, which we do) orthogonal or diagonal line
by placing the third stone in the middle of such a line, and assigns logit values of 3.0 to such
actions. Any other action is assigned a logit value of 0.0. These outputs are meaningless on
their own, but in combination with logits for other legal actions can easily be transformed

into probabilities by a computer program.
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4.1.1. Logit Regression Trees

In terms of raw playing strength, regression trees that output logits—exactly
as our original policies do—may be expected to have the highest potential per-
formance. Such a logit regression tree is at least as expressive as a linear policy
is, and—in contrast to some of the other structures described below—does not
involve any additional approximations. In fact, such a tree could even be more
expressive than a linear policy, because decision trees are non-linear functions
of their input features.

In terms of explainability, we argue that single-logit outputs can be prob-
lematic. Every individual feature used in branching points, as well as the entire
path from root to leaf node, could be considered interpretable, but the logit
output itself would be difficult to understand. In isolation, a logit value z(s, a)
does not have any meaning. A logit z(s,a) only gains some meaning when it is
compared to another logit z(s,a’) for a different action a’ # a that is legal in
the same state s, and even then the exact relationship is somewhat difficult to
understand. The exact relationship is that the ratio of probabilities assigned to

two actions by a policy 7 is given by the ratio of the exponentials of their logits:

m(s,a) exp(z(s,a)) o 2 bea(s) €xP (2(s,0)) _exp(z(s,a)) 2)
m(s,a')  Dpeas) exp (2(s,0)) exp(z(s,a’)) exp(z(s,a’))
This relationship is arguably not nearly as easy to interpret as the direct proba-
bilities assigned to all actions at once by classifier trees that take states as inputs

and enumerate all actions (in domains with small and fixed action spaces) as

potential target classes.

4.1.2. Multiclass State-Action Classification Trees

While the logit outputs z(s, a) for state-action pairs (s, a) discussed above
can be informative for a software agent, they may be difficult for humans to
interpret. If the goal is to help humans easily recognise actions that are likely
to be weak or strong in general based on local patterns around such actions,

it may be more helpful for a decision tree to be trained to explicitly provide

19
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outputs that can be directly interpreted as such qualitative estimates of action
quality. Following this intuition, we propose to train a decision tree that takes
state-action pairs (s, a) as input, and as output classifies that action in that state
as belonging to one out of a small selection of classes, each of which provides
a qualitative judgement of action quality. More specifically, the following three
classes are used in the implementation and experiments discussed in this paper,

but different partitions would also be possible:

1. Bottom 25%: label assigned to actions a that are predicted to be among
the worst 25% of legal actions A(s) in the state s.

2. IQR: label assigned to actions a that are predicted to be in the interquar-
tile range (better than bottom 25%, but worse than top 25%) of legal
actions A(s) in the state s.

3. Top 25%: label assigned to actions a that are predicted to be among the
best 25% of legal actions A(s) in the state s.

Figure [7] depicts an example of such a tree.

In comparison to logit regression trees, multiclass state-action classification
trees involve an additional level of approximation in the sense that larger col-
lections of inputs that would have distinct outputs in a logit regression tree are
grouped together and are assigned identical target labels for this type of classi-
fication tree. This may be expected to lead to a lower level of playing strength
when used to control a policy, but the output representation is arguably easier

to interpret.

4.1.3. Best-Action Classification Trees

One potential issue with multiclass state-action classification trees as de-
scribed above is that there is a natural ordering of the output classes (i.e., Top
25% > IQR > Bottom 25%), but neither the model nor the decision tree in-
duction algorithm account for this in any way. For example, it is possible for
a tree to predict equal probabilities of 0.5 for the Bottom 25% and Top 25%

classes for a given input pair (s, a), with a probability of 0.0 for the IQR class.
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Figure 7: Example multiclass classification tree for a handcrafted policy for Tic-Tac-Toe,
modelled as a decision tree that takes state-action pairs (s, a) as inputs and produces a single
classification for such a pair as output. This tree can recognise some winning actions (assuming
this is a policy for the white player), classifying those actions as being likely top-25% actions.
It can also recognise some cases where winning actions are possible but not picked (actions
placing next to an empty cell in between two white pieces), and classifies those as being likely
bottom-25% actions. Any other cases are classified as being equally likely to belong to any of

the three possible classes.
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This is not strictly wrong: it is very well possible that certain patterns correlate
strongly with both weak and strong actions, whilst not correlating strongly with
“average” actions. However, it may be considered undesirable for the purpose
of generating explanations of tactics, since such an output distribution does not
give any clear, actionable recommendations. There are techniques to account
for ordinal classes, but they work by transforming a single k-class classification
problem into k — 1 separate binary classification problems [63]. This would re-
sult in a collection of multiple different decision trees, which would also hamper
interpretability.

To avoid the potential for confusion discussed above, we propose to further
simplify the output space by training a classifier that outputs a single proba-
bility estimate for any given (s,a) input pair. This can be viewed as a binary
classification problem, with “positive” and “negative” classes. The first two types

of target labels that were considered, but found to be problematic, are:

1. Best-action indicator, i.e. a target class of 1 if and only if 7(s,a) =
maxg 7(s,a’), and 0 otherwise. The core issue with this is that the trained
policiesw are expected to be imperfect, and these target labels punish ac-
tions a’ with probabilities 7(s, a’) close to (but not equal to) the maximum
too harshly: they are treated as being equal to the worst actions.

2. Probability of playing, i.e. a“soft” target class simply equal to 7(s,a). The
core issue with this target label is that it is highly sensitive to the number
of legal actions in a state s: the best action in a state with many legal
actions may have a lower value 7(s,a) than a weak action in a different
state with few legal actions.

Finally, as a target label that does not suffer from either of the issues described

7(s,a)

e 2 (s A8 the target label for an input pair (s, a).

above, we propose to use
The outputs of such a model may intuitively be interpreted as estimators of
the (unnormalised, since they do not add up to 1) probabilities of actions to be
the best action in their state. This is somewhat similar to the logit regression

tree outputs, but the main difference is that these outputs are on a linear scale,
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Figure 8: Example best-action classification tree for a handcrafted Tic-Tac-Toe policy, mod-
elled as a binary classification tree that takes state-action pairs (s, a) as inputs, and produces

probability estimates of a being a “best action” in s as outputs.

rather than the exponential scale on which logits should be interpreted. Figure[g]

depicts a handcrafted example of this type of tree.

4.1.4. Imbalanced Best-Action Classification Trees

As a final type of decision tree, we consider one that uses the same target
labels as described in but where every branch for cases where a feature
evaluates to true is forced to immediately lead to a leaf node. Only branches
followed when tested features evaluate to false can lead to new decision nodes.
This special structure means that the decision tree may be read as a chain
of if-then-else-if rules. These are arguably even easier to interpret than more
balanced decision trees, since a human can forget about previous features when
navigating down the tree (or list of rules) when “simulating” the decision tree’s
process; as soon as one feature evaluates to true, it is guaranteed to immediately

produce an output for that input. The example decision tree depicted in Figure[g]
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would have qualified as this type of tree if the “True” branch from the root node
directly led to a single leaf.

4.2. Training Classification and Regression Trees

Classification and regression trees are trained using the customary top-down
tree induction strategy that, at each branching point, greedily selects whichever
feature maximises some notion of information gain when used to split on [64].
The self-play training process used to train our initial policies [20] collects game
states s encountered during self-play between MCTS-based players in an expe-
rience buffer. These game states, extracted from the experience buffer at the
end of the training process, and the fully trained (linear) policy g, are used to
construct the training data set for the decision trees.

Let D denote a dataset of all state-action pairs (s,a) that can reach a node
in a decision tree for the next feature to split on when building a tree is to
be determined. For example, in the case of a root node, this would simply
be the set of all possible (s,a) pairs such that a € A(s) is a legal action in
s, and s is one of the game states extracted from the experience buffer. In
the case of a node deeper than the root node, this set would be reduced to
only contain those (s, a) pairs that would lead to the node under consideration,
based on the feature vector ¢(s,a) and the tests performed in earlier nodes of
the decision tree. Let ¢; be a candidate feature under consideration to be split
on. Let Dgi C D denote the subset of data that would follow the branch for
oi(s,a) =1, and Di C D the remaining subset for the case where ¢;(s,a) = 0.
The following subsections describe the splitting criteria used for the various
types of decision trees proposed in this paper. For all types of decision trees,
splits that result in either one of the branches representing k < 5 state-action
pairs are prohibited, and splits that do not provide any improvement whatsoever
with respect to the splitting criterion in comparison to the current (unsplit) node

are also prohibited.
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4.2.1. Training Logit Regression Trees

The splitting criterion used for logit regression trees is to select features that
lead to a minimal sum of squared errors between the target logits z(s,a) =
OTqb(s, a) and the logits predicted by the regression tree. It is assumed that a
leaf node of a logit regression tree simply predicts the mean of the target logits
z(s,a) for all (s,a) pairs in the dataset that lead to that leaf. With some abuse
of notation, let Z(D) denote the mean of all the z(s, a) values for all (s,a) pairs
in a dataset D. The sum of squared errors resulting from a split on a candidate
feature ¢; is given by Equation

SSED,¢) = > (:(s,0) =205+ Y (a(s.a) - 2(DE))* (3)
(s,a)ED?f;i (s,a)eDgi

4.2.2. Training Multiclass State-Action Classification Trees

As described in Subsubsection every state-action pair (s, a) is assigned
one class ¢(s,a) € C as target label, where in this paper a set of three possible
classes C = { Bottom25%, IQR, Top25%} is used. Let 0 < P(¢’ | D) < 1 denote
the proportion of state-action pairs (s,a) in a dataset D such that c¢(s,a) =
¢’. Let |D| denote the cardinality of a dataset D, i.e. the number of state-
action pairs it contains. Let H(D) = —>_ .. P(c/,D)log, (P(c/, D)) denote
the entropy of a dataset D. The feature ¢; used for splitting is the one that
maximises information gain, which is computed as in Equation [4

T
_1Dg,
D

ot - Dol gpr @)

4.2.3. Training Best-Action Classification Trees

As described in Subsubsection smooth target labels % are
used, rather than discrete (binary) class labels for the best-action classifica-
tion trees. This means that, even though we may intuitively think of them as
classifiers—due to the outputs being interpretable as estimates of the proba-
bility of belonging to a best-action class—they technically function more like

regression trees. Therefore, a splitting criterion similar to Equation [3]is used,

with — 72 rather than logits as target labels. The key distinction with

max,, 7(s,a’)
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logit regression trees is that these outputs are on a linear scale, and bounded in
the [0, 1] range, whereas the logit outputs are on an exponential scale, with an

unbounded range.

4.2.4. Training Imbalanced Best-Action Classification Trees

The primary distinction between the imbalanced and the regular best-action
classification trees is that, in the imbalanced version, further splits are never
created after at least one feature has evaluated to true. Two variants of this
idea are considered.

The first variant, referred to as the asymmetric variant, only takes into
consideration the sum of squared errors over the subset of data Dgi in the “true”
branch of a potential split on a feature ¢;. The rationale behind this is that,
if we read such an imbalanced tree as a chain of if-then-else-if rules, purity in
the subset of data that a rule applies to may be valued more highly than purity
in the other subset of data that a rule does mot apply to. If a rule applies,
the model gives a direct recommendation, which we can be more confident in
if the dataset it applies to is pure. In contrast, if a rule does not apply, we
simply drop down to subsequent rules (if any exist), rather than giving a direct
recommendation.

The second variant, referred to as the symmetric variant, sums up the sums
of squared errors for both subsets of data resulting from a split, as per the
usual splitting criterion. Note that “asymmetric” and “symmetric” refer to
(a)symmetry in which subsets of data play a role in splitting criteria, whereas

“imbalanced” is used to describe the shape of the tree.

4.8. Policy Training Objective

All of the splitting criteria discussed previously for the various types of de-
cision trees depend on the parameters 8 of a fully trained policy mg—either
through the logits z(s, a) it computes for state-action pairs (s,a), or the action
probabilities 7g(s,a) computed by such a policy. A common training objective

for training such a policy from self-play, following Expert Iteration [65] and Al-
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phaGo Zero [2], is to minimise the cross-entropy (CE) between the policy 7 and
an expert policy 7™, which is typically derived from the distribution of visit
counts of a tree search process by MCTS.

Soemers et al. [66] remarked that MCTS (by design) allocates a part of
its search budget on exploration, and that this means that a policy 7 trained
to mimic the behaviour of MCTS through such a CE-based objective is also
explicitly trained to have some degree of exploratory behaviour. While this is
desirable when such a policy is subsequently used to guide future tree searches
(which should again have some degree of exploration), it may be less desirable
for extracting explainable tactics or a small set of key features. In comparison to
CE, an alternative training objective referred to as Tree-Search Policy Gradients
(TSPG) [66] was shown to (i) produce policies that are stronger in terms of
standalone playing strength (without tree search), (ii) have a more precise focus
with larger weights distributed over a smaller set of features, and (iii) have less
entropy in the resulting probability distributions over actions. Due to these
aspects, the TSPG objective was hypothesised to be more suitable than CE
for goals such as the ones considered in this paper. To further evaluate this,
decision trees trained on policies optimised for TSPG as well as the standard

CE objective are included in the following experiments.

5. Evaluation

For a quantitative empirical evaluation, we focus on comparing the playing
strength of the various types of decision trees proposed in this paper to that
of the full policies (using all discovered features). This is comparable to the
experiments used in other work on explainable RL based on various types of
decision trees and rules [40l [37, [38 [39], and can also give an indication of
whether or not the trees successfully select and focus on the most important

features. The following types of trained agents are considered:

e Logit (Obj; d): logit regression tree (see |4.1.1)) with a maximum depth
of d, trained to mimic the full policy with objective Obj (either CE or
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TSPG).

Multiclass (Obj; d): multiclass state-action classification tree (see[£.1.2)
with a maximum depth of d, trained to predict between three classes
(bottom 25%, IQR, top 25%), based on the full policy with objective Obj
(either CE or TSPG).

Best-Action (Obj; d): best-action classification tree (see with a
maximum depth of d, trained for binary classification (output probability
of being best action), based on the full policy with objective Obj (either
CE or TSPG).

Asymm. Imb. Best-Action (Obj; d): imbalanced best-action classifi-
cation tree (see with a maximum depth of d, with imbalanced tree
structure and asymmetric splitting criterion (see , based on the full
policy with objective Obj (either CE or TSPG).

Symm. Imb. Best-Action (Obj; d): imbalanced best-action classifi-
cation tree (see with a maximum depth of d, with imbalanced tree
structure and symmetric splitting criterion (see , based on the full
policy with objective Obj (either CE or TSPG).

Full Policy (CE): the full (linear) policy trained for the standard Cross-

Entropy (CE) objective, using all discovered features.

Full Policy (TSPG): the full (linear) policy trained for the Tree-Search
Policy Gradients (TSPG) objective [66], using all discovered features.

Unless specified otherwise, these agents select actions as follows. The agents
based on logit regression trees sample actions according to a softmax over the
output logits from their trees. The agents based on multiclass classification
trees sample actions proportionally to P(Top 25%) x (1 — P(Bottom 25%)).
The agents based on any of the best-action classification trees sample actions

proportionally to their outputs. The full (linear) policies sample actions accord-
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ing to a softmax over the logits predicted by their dot products. Additionally,

two types of agents that do not involve any training are included:
e Random: an agent that selects actions uniformly at random.

e UCT: a standard UCT agent [23| 25], using 1 second of thinking time per
move (note that all other agents play significantly faster than this, since

they do not run any tree search).

All agents, training code, games, and experiments are implemented in the Ludii

general game system [52] 53]E|

5.1. Results in Small Games

First, results are presented from experiments in a set of thirteen “small
games.” These are sequential, deterministic, 2-player games played on rela-
tively small boards—each having at most eleven playable sites. In all of these,
basic tree search algorithms such as UCT, and potentially even trained poli-
cies based on simple features, may be expected to be capable of strong or even
optimal play. The games included in this set are Akidada, Alquerque de Tres,
Haretavl, Hat Diviyan Keliya, Ho-Bag Gonu, Jeu Militaire, Kaooa, Madelinette,
Mu Torere (with the Complete (Observed) ruleset), Mu Torere (with the Simple
(Suggested) ruleset), Pong Hau K’i, Three Men’s Morris, and Tic-Tac-Toe.

For each of these games, every type of decision tree is trained with maximum
depths of d € {1,2,3,4,5,10}. This means that we ultimately end up with
(5 x2x6)+4 = 64 distinct agents: 5 types of decision trees, each trained
for 2 objectives (CE and TSPG), each with 6 different depth limits, plus the
2 full policies (CE and TSPG), the random agent, and the UCT agent. Each
of these agents is evaluated in every game by playing 50 matches (25 as first
and 25 as second player) against each of the 63 other agents, for a total of
50 x 63 = 3,150 matches per game, per agent. Win percentages averaged over

all possible opponents in a game are used as the primary measure of playing

2Source code is available at https://github.com/Ludeme/Ludii/,
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strength. Draws are counted as half wins for each player. If a match did not
end after 250 moves, it is declared a draw.

Figure [9] depicts the average win percentages of all of these agents, over all
thirteen small games, on the y-axis. The maximum depth d for agents based on
decisions trees is varied along the x-axis. The four agents that are not based
on decision trees are simply plotted as horizontal lines. Policies optimised for
CE (as well as Random) are drawn as dotted lines, and policies optimised for
TSPG are (as well as UCT) are drawn as solid lines.

To summarise the results across all thirteen small games in a single plot,
performance profiles [67] are provided for all types of agents (only displaying
decision tree agents with d = 5) in Figure The z-axis shows average UCT-
normalised scores, which are scores (win percentages) that have been linearly
rescaled on a per-game, per-opponent basis, such that 1.0 corresponds to the
performance of UCT in that game against that opponent. The y-axis shows the
fraction of runs for which an agent obtained a score greater than any given UCT-
normalised score 7. Shaded areas indicate 95% bootstrap confidence intervals
based on 10,000 bootstrap replicates, sampling from the runs against different
opponents. Note that this means that the intervals indicate uncertainty due
to variability in performance with respect to different opponents, rather than

variability due to randomness in any training or evaluation processes.

5.2. Results in Other Games

Where the results described above were for a set of thirteen small games, in
this section we look towards a different set of thirty other games: Alquerque,
Amazons, Ard Ri, Arimaa, Atazz, Bao Ki Arabu (Zanzibar 1), Bizingo, Break-
through, Chess, English Draughts, Fanorona, For and Geese, Go, Gomoku,
Gonnect, Havannah, Hex, Knightthrough, Konane, Lines of Action, Omega,
Pentalath, Pretwa, Reversi, Royal Game of Ur, Shobu, Surakarta, Tablut, XII
Scripta, and Yavalath. All of these are sequential, 2-player games, with most of
them being deterministic, but some stochastic. In contrast to the small games,

plain UCT agents or trained policies using only simple patterns cannot be ex-
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Figure 9: Win percentages, averaged over all other agents as opponents, for various types
of agents in thirteen small games. Data plotted for maximum decision tree depths d €

{1,2,3,4,5,10} along z-axis.
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Figure 10: Performance profiles [67] for several agents, summarising performance across all
thirteen small games. Performance is measured by UCT-normalised scores 7, which are win
percentages that have been linearly rescaled on a per-game, per-opponent basis, with the

performance of UCT always being equal to 1.0.
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pected to play (close to) optimally in these games, but meaningful (better than
random) play may still be expected.

The overall setup of experiments in these games is similar to the setup de-
scribed above for small games, with two primary differences. Firstly, UCT is
no longer included in the evaluations in order to avoid the large amount of
computation time required by this agent for evaluations against a large number
of possible opponents (63 other agents) in such a large set of games, including
many relatively large and complex games. Secondly, matches are allowed to
continue for up to 1,000 moves rather than 250 before declaring them a draw,
since the limit of 250, which is appropriate for the small games, may be too low
for many of these larger games.

Figure [11] summarises the results for all 63 agents by reporting the median,
interquartile mean, and mean win rate for every agent against all other agents,
across all thirty games. The 95% bootstrap confidence intervals represent vari-
ability in performance across different games and different opponents, rather
than variability due to stochasticity in training or evaluation processes. Fig-
ure [12] depicts performance profiles for the same experiment, restricted to only

depth limits of d = 5 for agents based on decision trees for visual clarity.

5.8. Biasing MCTS with Trained Features

While previous work has already demonstrated that full sets of features
(without subsequent selection of a smaller subset) can improve the playing
strength of MCTS by biasing it in many games, it was also found that they
can reduce the playing strength in some games [21], [22]. Such reductions in
playing strength are likely due to the computational overhead incurred by us-
ing features, which may be mitigated by using only smaller subsets of features.
Therefore, the performance of biased versions of MCTS—biased by full policies
as well as decision trees—is evaluated against the standard UCT baseline, on
the complete set of thirty games also used in the previous subsection. Every
agent uses one second of search time per move. For every game and every

matchup, 150 evaluation matches were run (with every agent playing each side
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Figure 11: Aggregate metrics for the performance levels of all 63 agents in the set of thirty
games. Median, interquartile mean (IQM), and mean of the win rates are computed over runs
in all games against all possible opponents. Coloured bars represent 95% bootstrap confidence

intervals, estimated from 10,000 bootstrap replicates using the rliable library [67].

34



0.75

0.50

* Logit (CE; d =5)
—— Logit (TSPG; d = 5)

* Multiclass (CE; d = 5)
—— Multiclass (TSPG;

*  Best-Action (CE;
0.25| = Best-Action (TSPG; d = 5)

+ Asymm. Imb. Best-Action (CE; d =
—— Asymm. Imb. Best-Action (TSPG;

- Symm. Imb. Best-Action (CE; d =
—— Symm. Imb. Best-Action (TSPG; d = 5)

+ Random

- Full Policy (CE)
0.00]  — Funr policy (TSPG)

Fraction of runs with score > 7

0.0 0.2 0.4 0.6 0.8 1.0
Average Winrate (1)

Figure 12: Performance profiles summarising the performance of several agents (only dis-
playing results for decision trees with depth limits of d = 5) across thirty different games.
Performance is measured by the win rate averaged over all possible opponents (all other

agents, including trees with depth limits d # 5).
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Figure 13: Performance profiles summarising the performance of MCTS agents biased by

several different policies against UCT, across thirty different games.

of the matchup 75 times).

Because policies trained for the TSPG objective were previously found not to
provide additional value to MCTS [66], we focus only on policies trained for the
CE objective. This experiment is repeated with the Logit trees (because their
output representation is the same as that of the full policies), and Multiclass
trees (because Multiclass (CE; 5) appears to outperform Logit (CE; 5) in
Figure .

Table [2| lists the median, interquartile mean (IQM), and mean win rates of
MCTS agents biased by various different policies against UCT, aggregated over
the thirty games. Figure[L3|additionally depicts performance profiles for MCTS
agents biased by Multiclass trees (as well as the full policy) against UCT.
Performance profiles for agents biased by Logit trees are omitted to save space

(these results were similar to those for the Multiclass trees).
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Win rate against UCT

Agent Median IQM  Mean

MCTS with Logit (CE; d) trees

d=1 0.61 0.66 0.64
d= 2 0.72  0.70 0.68
d= 3 0.69 0.71 0.70
d= 4 0.70  0.70 0.69
d=5 0.63 0.66 0.66
d=10 0.67  0.62 0.59

MCTS with Multiclass (CE; d) trees

d=1 0.66  0.62 0.60
d= 2 0.66  0.67 0.66
d= 3 0.73 0.72 0.67
d= 4 0.72 0.72 0.68
d=5 0.67 0.71 0.66
d=10 0.63 0.60 0.56
MCTS with Full Policy (CE) 0.69 0.64 0.58

Table 2: Median, interquartile mean (IQM), and mean win rates (across thirty games) of

MCTS agents biased by various trained policies against UCT.
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5.4. Discussion

The plots in Figure [9] show that, generally, the playing strength tends to
increase (or eventually stabilise) as the depth limits of decision trees increase in
the small games. As expected, deeper decision trees can express more powerful
policies. The imbalanced trees tend to perform worse than the (larger) balanced
trees, and trees (as well as non-tree policies) trained for the TSPG objective tend
to outperform policies trained for the CE objective. These plots do not provide
a clear ranking among the other types of decision trees (Logit, Multiclass, and
Best-Action), since this differs from game to game.

Three of the thirteen small games appear to be exceptions, in that most types
of policies have similar levels of playing strength, and these remain constant
regardless of depth limits. This may be an indication that these games have a
low strategic (or tactical) depth [68], but it may also simply indicate that the
training algorithms fail to learn relevant tactics. For the first of these three
games, Alquerque de Tres, an af-search [69] of less than a second easily finds
that optimal play leads to a draw after six moves, which indeed points to a
game with relatively little strategic depth. The second game, Ho-Bag Gonu,
keeps going on infinitely under perfect play, and requires a chain of multiple
unforced errors before an optimal player can capitalise and obtain a victory.
The third game, Mu Torere; Simple (Suggested Ruleset) uses a flawed (as a
result of a mistranslation) ruleset [70] [I5] in which the first player can win in
a single move. This is in contrast to Mu Torere; Complete (Observed Ruleset),
which uses the ruleset based on the correct translation, for which a greater
variety in performance levels between the policies is observed. For all three of
these games, we find that sufficiently deep trees can learn to play optimally
against UCT, but they fail to learn how to exploit mistakes by suboptimal
players. In the case of Mu Torere, no features or trees are learnt for the second
player at all, because all the experience collected from self-play by MCTS-based
agents consists of the first player winning in a single move. These issues could
potentially be improved by introducing additional exploration in the self-play

process.
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The performance profiles depicted in Figure suggest that, on average,
Logit outperforms Multiclass (for the TSPG objective), and Multiclass outper-
forms Best-Action, followed by the Symmetric and Asymmetric variants of the
Imbalanced Best-Action classification trees. This ordering corresponds to the
number of simplifications and approximations made for the sake of arguable
improvements with respect to interpretability. The output type of Logit trees is
equal to the output type of the original policies, but difficult to interpret. The
Multiclass classification tree simplifies the output representation to a three-
class problem, and the Best-Action classification tree further simplifies this to a
binary classification problem. The Symmetric Imbalanced Best-Action tree im-
poses additional constraints on the shape of the tree (also causing it to use fewer
features), and the Asymmetric variant furthermore adjusts the splitting crite-
rion. However, these differences in performance tend to be relatively small, in
particular among the top three decision tree types. One exception is that, when
training for the cross-entropy objective, Multiclass trees appear to outperform
Logit trees.

For the set of larger games, Figures[11] and [I2] paint a similar overall picture
in terms of ranking decision tree types by playing strength, albeit with more
pronounced differences between the types. Policies trained for the TSPG objec-
tive also have a clearer advantage over policies trained for CE, with Figure
even showing that some TSPG trees limited to a depth of d = 1 perform at a
similar level to CE trees limited to a depth of d = 10. Again, Multiclass trees
trained for the CE objective outperform Logit trees for this objective. We hy-
pothesise that using the less fine-grained output representation of the Multiclass
trees may implement a helpful form of regularisation.

Table [3] provides upper bounds on the numbers of distinct features that
various types of policies may use. The full policy always has up to 400 new
features generated from self-play (but possibly fewer if the training process
takes too long). The number of (atomic) features that are used to initiate
a training process can vary greatly depending on the game. We focused on

displaying and discussing results for the trees limited to d = 5, since these are
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Number of Distinct Features

Policy Initial Feature Set From Training Total

Balanced Decision Trees

d=1

d= 2 <3
d= 3 <7
d= 4 <15
d= 5 <31
d=10 <1023

Imbalanced Decision Trees

d=1 1
d= 2 <2
d= 3 <3
d= 4 <4
d= 5 <5
d=10 <10
Full Policy 72-452 <400 < 472-852

Table 3: Upper bounds on the numbers of distinct features that various policies may use.
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guaranteed to use substantially fewer features than the full policy. The larger
trees limited to d = 10 might use the full feature set, which makes evaluating
them less interesting with respect to the potential use of decision trees for feature
selection.

The results in Table [2] show that, according to all of the three different
aggregate statistics (median, IQM, and mean), MCTS agents biased by any
of the trained policies tend to outperform UCT over the set of thirty games.
Note that there may of course be individual games where this is not the case.
In general, it appears that the best results tend to be obtained by using trees
limited to depths of 3 or 4. The observation that such policies tend to outperform
the larger trees and the full policies suggests that feature selection can indeed
improve playing strength, likely due to a reduction in computational overhead.

The performance profiles in Figure tend to intersect many times. This
suggests that there is no clear single restriction on the size of trained policies that
consistently works best for biasing MCTS in all games. Only the full policies
and the largest trees, with a depth limit of d = 10, somewhat stand out as likely
being the worst performers. In the top-left section of the plot, the smallest tree
restricted to d = 1 has the best performance level; this policy (with the lowest
computational overhead) has the lowest number of cases with an extremely
poor performance level. In the bottom-right section of the plot, the trees with
depth limits of 4 and 5 have the best performance levels; these policies have
the greatest likelihood of delivering extremely strong levels of performance (win

rates exceeding 0.8).

5.5. Case Studies

In addition to the quantitative results focused on playing strength, we man-
ually inspect several decision trees and the features they use for two different
games. This gives an impression of the ways in which we can learn about the

games’ tactics as well as the Al training process.
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(a) Learnt tree for Logit (TSPG; 1). (b) Learnt tree for Best-Action (TSPG; 1).

Figure 14: Two trees with depth limits of d = 1 that were built for the game of Tic-Tac-Toe.
A shaded square indicates that that position must be an “off-board” position (i.e., not exist

as a part of the board). A small white square indicates a position that must be empty.

5.5.1. Tic-Tac-Toe

Figure [T4] depicts two trees, each restricted to a maximum depth of d = 1,
that were learnt for Player 1 (the white player) for the game of Tic-Tac-Toe.
The tree in Figure [14(a)|is a Logit regression tree, and the one in Figure [14(b)
is a Best-Action classification tree. Due to the depth limit of d = 1, each tree is
limited to only a single feature.

Both trees have selected sensible features that are clearly relevant to the
game, but different ones. The Logit regression tree has selected a feature that
strongly recommends playing below a consecutive line of two crosses, which
prevents the opponent from making a winning move in the next turn. Note
that, due to rotations and reflections, this feature can also apply to moves that
block orthogonal lines by placing a circle to their left, right, or above them.
However, blocking lines by placing a stone in between two opposing pieces, or
blocking diagonal lines, would require additional features. It should be remarked
that this feature also has a redundant constraint: it requires a hypothetical site
diagonally below the recommended action to be off the board. Because the
game is played on a 3x3 grid of square cells, the constraint is already implied

by the rest of the feature. Hence, an equivalent feature (which would likely
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be preferable from the point of view of interpretability) could simply omit this
constraint. This equivalence is emergent from the game’s rules, as discussed in
0.2l

The feature used by the Best-Action classification tree is one that recom-
mends playing in a position that has two opposite diagonal connections to empty
cells. On the 3x3 grid of Tic-Tac-Toe, the only cell that can ever satisfy this
condition is the centre cell. This feature no longer recommends playing in the
centre if at least two corners on the same side of the board are already occupied,
so in theory it is different from a pure centre-detector. However, in practice,
it is almost equivalent due to the strong preference of many agents—such as
MCTS agents, but also the policy of this decision tree itself—to immediately
play in the centre in the very first move of the game. This is an example of
a dependence between features that emerges from the policies used to play, as

discussed in 3.3

5.5.2. Hezx

Hez is a 2-player connection game, played on a (by default 11x11) rhombus
of hexagonal cells, where each player has the objective of creating a connection
between two opposite sides of the board with pieces of their colour. For this
game, there is extensive documentation available of patterns, tactics, and strate-
gies that work well for humans [71], [72] as well as AI players [49] [50]. Figure
depicts several features for this game.

The feature in Figure is selected as the first feature by Logit (TSPG;
d) trees. In the case of such a tree restricted to d = 1, it predicts a logit of 4.16
for actions that match the feature, and 25.86 otherwise, which means that it
strongly discourages such moves. We are not aware of this having any particular
strategic or tactical relevance, and suspect it is simply an artifact resulting from
the limited playing strength of the MCTS agents used in self-play training.

The feature in Figure is selected as the first feature by Multiclass
(TSPG; d) trees. The tree restricted to d = 1 predicts { P(Bottom 25%) = 3.7 x
10~%, P(IQR) = 0.98, P(Top 25%) = 0.02} for actions that match the feature,
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Figure 15: Four features for the first player (white) in the game of Hez. @ The first feature
selected by Logit (TSPG; d) trees. It matches any move in the second ring of cells from the
edge of the board. @The first feature selected by Multiclass (TSPG; d) trees. It matches
any move that has an adjacent position which is closer to the region with index 1 (which, in
Ludii, is the set of all cells along the black edges, which the black player aims to connect)
than the position of the move. In practice, this feature applies to any move except for moves
along the black board edges. The first feature selected by Best-Action (TSPG; d) trees,
including imbalanced variants. Note that the undecorated cells are unrestricted; they need
not be empty. @ A bridge intrusion feature, which is a well-known tactic for Hez to stop

the two black stones from connecting.
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and {P(Bottom 25%) = 0.07, P(IQR) = 0.93, P(Top 25%) = 4.1 x 10~} for
actions that do not match the feature. This means that the feature is used
to slightly discourage playing in either of the opponent’s goal regions, which
may indeed be a useful basic strategy for AI. However, the fact that actions are
classified as being overwhelmingly likely to belong to the IQR class regardless
of whether or not the feature matches, with probabilities of 0.98 and 0.93,
respectively, arguably makes for questionable advice to humans.

The feature in Figure is selected as the first feature by Best-Action
(TSPG; d) trees. The tree restricted to d = 1 predicts a probability of 0.22 of
being the best action for actions that match the feature, versus a probability
of 0.01 for actions that do not match the feature. The action encouraged by
this feature prevents what could otherwise become a future connection between
the two opposing (black) pieces. It could be viewed as a longer-range, less
“urgent” variant of the feature depicted by Figure which in turn closely
relates to the well-known concepts of virtual connections and bridges in Hex and
many other connection games [71] [72]. Patterns related to this strategy have
also previously been used to improve the playing strength of UCT in several
connection games, including Hex [49]. The feature depicted in Figure is
also used by the other types of decision trees at deeper levels; at depth d = 3
for the Logit regression tree, and depth d = 2 for the Multiclass classification
tree. Note that the formation of the two black pieces in Figure would,
in the absence of other pieces, have formed a loose connection, which Browne
[TI] describes as an intermediate Hex strategy. Hence, this feature could also
be viewed as the final step of an attack against such a loose connection by the

white player.

6. Conclusion

We have explored the problem of distilling linear policies for game-playing—
in this case based on local patterns that are matched to the game state in the

spatial area around actions—into various forms of decision trees, for a wide vari-
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ety of board games. Decision trees inherently perform feature selection, meaning
that they can be used to identify key features from a substantially larger set of
features used in the original policies. Furthermore, decision trees are generally
considered to be highly interpretable models, making them a popular choice
for explaining policies in RL. Many of the games considered in this paper have
substantially larger action spaces than environments used in previous work on
explaining policies. Therefore, we proposed and evaluated a variety of differ-
ent output representations for decision trees that take state-action pairs, rather
than just states, as inputs. These provide per-action advice in a variety of forms,
with some hypothesised to be more readily interpretable than others.

Empirical evaluations in a set of thirteen small games, and an additional set
of thirty larger games, show that the performance (in terms of playing strength)
of different types of decision trees tends to decrease as the output representations
are simplified for the sake of (hypothesised) improvements in interpretability,
but this differs from game to game. The Logit regression trees in particular
tend to perform close to the level of the full policies, with significantly lower
total feature counts (for depth limits up to and including d = 5) and lower
feature counts along any single path from root to leaf. Decision trees trained for
the Tree-Search Policy Gradients objective [66] convincingly outperform those
with equal feature counts and depth limits trained for the standard cross-entropy
objective. Full policies as well as all sizes of decision trees are found to be capable
of improving the playing strength of MCTS agents in expectation over thirty
different games. Mid-sized trees (for the Multiclass type and CE objective), with
depth limits of about 3 or 4, appear to provide the most stable improvements.
This suggests that using these decision trees for feature selection can improve
the playing strength of biased MCTS agents. Taking two games (Tic-Tac-Toe
and Hex) as case studies in which we manually inspect the learnt trees and the
features they focus on, we find primarily features that are easily recognised as
relevant to the games’ strategies and tactics, with a small number of features
for which their importance or relevance is not immediately clear to us.

In this work, feature selection (by building decision trees) was performed
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as a separate step after fully training a policy. During that original policy
training process, the set of features only ever grows. A core reason for not
already removing any features during that process is that “irrelevant” features
may still be useful for building compound features, and therefore there is a
risk that removing features too early hampers the ability to construct valuable
new features too much. An interesting avenue for future research would be to
interleave feature removal in that process in a manner that accounts for such a
risk. Given the ability to obtain small sets of key features, another interesting
direction for future work would be to use such small sets of features in move
hash codes for various enhancements of tree search algorithms, such as FAST

[73], PPAF [74], or move groups [75, [76], [77].
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