
Extracting Tactics Learned from Self-Play in General
Games

Dennis J. N. J. Soemersa,∗, Spyridon Samothrakisb, Éric Piettea, Matthew
Stephensona

aMaastricht University, Department of Advanced Computing Sciences, Paul-Henri
Spaaklaan 1, 6229 EN, Maastricht, the Netherlands

bUniversity of Essex, Institute for Analytics and Data Science, Wivenhoe Park, Colchester
CO4 3SQ, UK

Abstract

Local, spatial state-action features can be used to effectively train linear policies

from self-play in a wide variety of board games. Such policies can play games

directly, or be used to bias tree search agents. However, the resulting feature

sets can be large, with a significant amount of overlap and redundancies between

features. This is a problem for two reasons. Firstly, large feature sets can be

computationally expensive, which reduces the playing strength of agents based

on them. Secondly, redundancies and correlations between features impair the

ability for humans to analyse, interpret or understand the tactics learned by

the policies. We look towards decision trees for their ability to perform feature

selection, and serve as interpretable models. Previous work on distilling policies

into decision trees uses states as inputs, and distributions over the complete

action space as outputs. In contrast, we propose and evaluate a variety of

decision tree types, which take state-action pairs as inputs, and provide various

different types of outputs on a per-action basis. An empirical evaluation over

forty-three different board games is presented, and two of those games are used

as case studies where we take a more detailed look and attempt to interpret the

discovered features.

Keywords: games, feature selection, decision trees, explainable AI

∗Corresponding author
Email address: dennis.soemers@maastrichtuniversity.nl (Dennis J. N. J. Soemers)

Preprint submitted to Information Sciences October 19, 2022

1. Introduction

Machine learning techniques have been shown to be capable of producing

strong or even superhuman game-playing agents for a variety of games, but

identifying just the key, basic tactics in an explicit white-box format for general

games remains a challenge. State-of-the-art results in terms of game-playing5

strength [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] are, in recent years, essentially always

obtained using Deep Neural Networks (DNNs) [11] as function approximators for

functions such as policies and/or value functions [12]. Such approaches based on

deep learning require significant computational resources [13, 14] even for just a

single game, which makes their use prohibitive for research projects that require10

scaling up to orders of 1,000 or more different games [15, 16]. Additionally,

despite numerous efforts, interpretability of DNNs remains a concern [17, 18].

Explaining game playing agents is crucial if one is interested in using these

agents as teaching aids, rather than black-box adversaries.

As a less computationally intensive alternative, simple linear functions of15

state-action features have been proposed [19, 20]. Figure 1 provides some intu-

ition for what such state-action features look like and what they may encode.

This approach generally does not lead to state-of-the-art or superhuman playing

strength, but can allow for meaningful policies to be trained in a wide variety

of games in relatively short amounts of time—for example, by using only 100 or20

200 games of self-play [21, 22], in contrast to the many millions typically used

for deep learning.

The set of features discovered and used by these training processes often

contain many strongly correlated or otherwise redundant features, leading to

two issues. Firstly, this can negatively affect the playing strength of the result-25

ing agents [21], because greater numbers of features are associated with greater

computational costs, which reduces the space explored by search algorithms such

as Monte-Carlo tree search (MCTS) [23, 24, 25]. Secondly, strong correlations

between features, and presence of redundant features, can hamper explainabil-

2

∗

(a)

∗

(b)

p P

P
(c)

Figure 1: Three examples of local state-action features that may be useful in various games.

A small square indicates a position that must be empty. Uncovered sites are drawn for ease of

interpretation, but play no role in the feature; they may be empty or non-empty or even not

exist at all. (a) This feature matches actions that either complete or break a “bridge” of white

pieces, depending on which player is the player to move. (b) This feature matches actions

that either complete or break a line of five black pieces. (c) This feature matches actions that

move the bottom-left white pawn in such a way that the black pawn becomes flanked by two

white pawns.

3

ity and interpretability. This is the case in particular when directly inspecting30

the trained weights of a linear model without accounting for such correlations

[26, 27], but also when using more advanced methods, such as permute-and-

predict methods, for estimating feature importance [28]. Because our set of

features grows dynamically during the training process (as discussed in Sub-

section 2.4), and training from self-play inherently leads to a non-stationary35

data stream, correlations and dependences between features can change over

time. Some features may not be redundant initially, but become redundant

later on in a training process, or vice versa. This reduces the likelihood that on-

line approaches such as ℓ1 regularisation [29] can effectively identify and ignore

redundant features.40

This paper explores how to address these two issues and extract meaningful,

understandable, and explainable tactics after training such linear models via self-

play, by distilling them into a variety of decision or regression trees. Such trees

will ideally select a relatively small number of key features to represent relevant

tactics for any game under consideration. The primary focus of this paper is on45

proposing and evaluating several different ways in which the outputs of decision

trees can be represented, since we find that existing approaches provide limited

support for domains with large and variable action spaces. Note that, in terms

of explainability, the primary interest is in providing useful but basic tactics

for beginners, which could, for instance, be included in automatically-generated50

manuals for new (possibly procedurally-generated) or otherwise unknown games

[30]. Automatically generating insights into basic tactics for games may also be

interesting to aid game designers, and can also be used to gain a deeper, more

explicit understanding of what our algorithms manage to learn and in which

situations they fail to learn.55

The remainder of this paper is structured as follows. Section 2 provides

background information on work that this paper builds on, as well as other re-

lated work. A discussion of various ways in which different features can have

strong correlations or other dependences is provided in Section 3. Several dif-

ferent types of decision trees, with state-action features as inputs and various60

4

different output representations, are proposed and discussed in Section 4. Sec-

tion 5 describes an evaluation of the proposed techniques, and Section 6 finally

concludes the paper.

2. Background

This section discusses related work on explainability in reinforcement learn-65

ing in games, and it provides background information on the considered problem

setting and the training processes used to generate the initial sets of features and

policies. These policies are the ones that are subsequently distilled into smaller,

more interpretable policies using smaller sets of features in the remainder of the

paper.70

2.1. Related Work on Explainability in Reinforcement Learning and Games

In related work on explainability in games, and reinforcement learning (RL)

more generally, there is often a focus on (1) local explanations, which are expla-

nations on a per-state basis, (2) explaining value functions, and/or (3) explaining

policies in domains with fixed, and relatively small, avatar-centric action spaces.75

For example, Lin et al. [31] focus on generating contrastive explanations for a

model’s preference of one action over another for specific states. Baier and

Kaisers [32, 33] consider the problem of explaining individual decisions made by

tree search algorithms such as MCTS, and Silva et al. [34] generate counterfac-

tual justifications for decisions made by an adversarial tree search for Curling.80

Pálsson and Björnsson [35] generate visualisations of the most important parts

of the state representation for the predictions made by a value function on a

per-state basis in the game of Breakthrough, and Hilton et al. [36] similarly

visualise important parts of the state for policies and value functions in the

CoinRun environment. In contrast, the aim in this paper is to extract general,85

simple tactics that can be explained to humans for general use throughout an

entire game (or substantial portions thereof).

Coppens et al. [37, 38] and Deproost [39] distill trained policies into var-

ious forms of decision trees and rules, which can lead to local (state-specific)

5

as well as global (game-wide) explanations of policies. These were evaluated90

in environments such as the Mario AI benchmark, Ms Pacman, and Enduro.

Other commonly-used environments in work on explainable RL are CoinRun

[36], Lunar Lander, Cart Pole, and Mountain Car [40, 31]. These are all envi-

ronments with fixed and relatively small action spaces, where actions can easily

be labelled and understood when used as outputs for a classifier. These are95

often actions such as “left”, “right”, “jump”, and so on, which are typically used

to control a single avatar. In contrast, this paper considers (board) games with

significantly larger action spaces, where the subsets of the action space that are

legal can also vary from state to state. Similar approaches, where all possibly

unique actions are enumerated as potential target classes for a classifier, quickly100

lead to decision trees or rules that become difficult to understand when they

have to distinguish between hundreds or thousands or even more distinct target

classes.

McGrath et al. [41] describe an extensive analysis of the state-of-the-art

Chess engine of AlphaZero, attempting to gain insight into which human-understandable105

concepts it learns, and when it does so throughout its training process. The ma-

jority of this analysis assumes that deep, expert human knowledge is already

explicitly available (to actively probe the network during training for such con-

cepts), and relies on massive amounts of self-play data for a single game. Neither

of these are assumed to be available in this paper. Interestingly, their analysis110

suggests that AlphaZero tends to learn tactical skills before it learns positional

skills. This may be an artifact of how the training process (based on the use

of tree search in self-play) works, or may be an indication that learning local

tactics is inherently easier than, or a prerequisite for, learning global strategies.

This intuition is one of the reasons that, given the assumed computational con-115

straints and requirements for extremely short training runs in this paper, the

focus is placed on learning policies based on local patterns, rather than functions

such as state-value functions, which operate on a more global level.

6

2.2. Markov Decision Processes

This paper uses the standard formalism of Markov decision processes (MDPs),120

as commonly used in RL [12] to formalise the problem setting. An MDP is de-

fined by a set of states S, a set of actions A, an initial state s0 ∈ S, and dynamics

P such that P(s′, r | s, a) denotes the probability of transitioning into a succes-

sor state s′ ∈ S and obtaining a real-valued reward r, when selecting an action

a ∈ A from a current state s ∈ S. The set of legal actions may be restricted125

depending on the current state, and A(s) ⊆ A is used to denote the actions

that are legal in a state s. The behaviour of an agent is typically described as

a policy π, such that 0 ≤ π(s, a) ≤ 1 denotes the probability that the agent

selects an action a ∈ A when it is in a state s, and
∑

a∈A(s) π(s, a) = 1.

Note that the standard MDP formalism applies to a single agent, but the130

games considered in this paper are actually environments with multiple (typi-

cally 2) agents, who often have opposing objectives. This is important to take

into account when designing self-play training algorithms to train policies π,

but in this paper it is assumed that such policies have already been trained [21].

Given this assumption, it is safe to use the standard MDP formalism throughout135

this paper, implicitly assuming that any influence of other agents has already

been absorbed into the dynamics P.

2.3. Spatial State-Action Features

In previous work [19, 20], we proposed a formalisation for spatial state-action

features that allows for applicability to a wide variety (board) games—essentially140

any game that involves 2-dimensional, discrete areas, with spatial semantics

having some degree of relevance to game-play, is supported. For any given

state-action pair (s, a), where s denotes a game state and a an action that is

legal in s, such a feature tests whether a certain pattern (or configuration) of

requirements in the local area around the action a matches in the state s. For145

example, a feature can test whether the destination of a move is next to a

friendly or enemy piece, whether it moves away from a position next to the edge

of the board, or any other combination of one or more such conditions for one

7

or more positions specified relative to positions affected by a. Several examples

are depicted in Figure 1.150

Similar types of local patterns have also been used in several game-specific

engines, for games such as Breakthrough [42], Chess [43], Go [44, 45, 46, 47, 48],

and Hex [49, 50]. The work described by Soemers et al. [20] focuses on formal-

ising such patterns in a way that is compatible with many different games—

irrespective of the particular board geometry used [51]—and an efficient imple-155

mentation for pattern matching without game-specific domain knowledge in the

Ludii general game system [52, 53].

2.4. Feature Discovery and Policy Training

In previous work on the use of patterns in games such as Go, it is relatively

common to exhaustively enumerate all patterns of a given size (e.g., all 3×3160

patterns centered on the intersection under consideration) [54, 55, 48, 56, 57].

When considering games with arbitrarily complex board geometries [51] or sig-

nificantly greater numbers of types of distinct pieces than in Go (e.g., twelve

in Chess versus two in Go), it is no longer feasible to exhaustively generate all

such patterns even for a small size.165

For this reason, an approach is used where discovery of new features and

training of policies using those features are intertwined in a self-play training

process [21]. This starts with a smaller set of simple atomic features, and new

features are iteratively constructed by combining existing features (or rotated

or reflected instances of them) into more complex compound patterns [58, 59,170

60, 21]. This process is depicted in Figure 2. The atomic features that the

process starts with are features that only have a single requirement for the game

state data, in addition to any requirements they may have for action data. For

example, an atomic feature may require a single site (relative to some reference

point) to be occupied by a white stone.175

Given a (dynamically growing) set of features, a parameterised policy πθ is

trained from self-play by learning a vector of parameters θ =
[
θ0, θ1, . . . , θn−1

]
.

Such a vector contains one parameter (or weight) θi for every feature ϕi in a set

8

∗

∗

∗

∗

∗

Figure 2: Example of how new features are generated by combining instances of existing

features. On the left-hand side, we start with three instances of atomic features. The top and

middle instances are first combined into a new feature that matches actions that place a stone

in between two white stones. This more complex feature is subsequently combined again with

another feature, finally resulting in a feature that matches actions that complete or break a

line of four white stones.

9

of n features. Whenever new features are discovered and added to the set during

a training process, new parameters—initialised to a value of 0—are appended

to the parameter vector. Features ϕi : S × A(s) → {0, 1} are binary features

that take values of either ϕi(s, a) = 0 or ϕi(s, a) = 1 for any input state-action

pair (s, a). A boldface ϕ(s, a) =
[
ϕ0(s, a), ϕ1(s, a), . . . , ϕn−1(s, a)

]
is used to

denote a vector of such feature values for a state-action pair (s, a). The dot

product between a feature vector and a trained parameter vector produces a

logit zθ(s, a) = θ⊤ϕ(s, a). For any given state s, the probabilities πθ(s, a) of all

the legal actions a ∈ A(s) of the policy are then computed by a softmax over

the logits, as in Equation 1:

πθ(s, a) =
exp (zθ(s, a))∑

a′∈A(s) exp (zθ(s, a
′))

(1)

The policies considered in this paper—which are to be distilled into decision

trees—were trained in a similar way as the policies in AlphaZero [5], which

means that they were trained using a cross-entropy loss to mimic the behaviour

of a search-based agent. This may be viewed as a form of multinomial logistic

regression, albeit with a non-stationary target distribution, the performance of180

which is meant to improve in terms of playing strength as training progresses.

For further details on the setup of the self-play training processes used to train

initial policies for the experiments in this paper, we refer to our earlier work

[20].

3. Feature Dependences185

Sets of features constructed and used as described in Subsection 2.4 fre-

quently contain many subsets of features with strong correlations or depen-

dences between each other. This can be considered problematic for two reasons.

Firstly, if there are many redundancies in the set of features, computing poli-

cies may be slower than necessary, which harms playing strength of tree search190

algorithms guided by such a policy [21]. Secondly, understanding, interpreting,

or analysing the importance of features based on their trained weights becomes

10

P
(a)

P
(b)

Figure 3: Two example features that may or may not be equivalent depending on the game

they are used in. Both encode, for grids of square cells, a diagonal move by a white pawn,

but (b) has the additional restriction that the destination must be occupied by a black piece

(of any type, indicated by a circle).

error-prone when features are not mutually independent [26, 27, 28]. In this

section, several different ways in which (strong) dependences between features

may exist are distinguished.195

3.1. Game-Agnostic Dependences

For some pairs of features ϕi and ϕj , i ̸= j, we have that one of them being

(in)active by definition—regardless of which game is being played—implies the

other also being (in)active, i.e. (ϕi(s, a) = 0) ⇒ (ϕj(s, a) = 0) or (ϕi(s, a) =

1) ⇒ (ϕj(s, a) = 1). Consider, for example, the different features depicted in200

Figure 2. By definition, whenever a feature that was constructed by combining a

pair of other features is active, its constituents must also be active. Conversely,

whenever a simpler feature is not active, any compound feature with the simpler

feature as a constituent also cannot be active. Note that these are just examples:

there may also be similar implications between features that are not each other’s205

constituents. For example, a feature that requires at least one friendly adjacent

piece being active will always imply that a feature requiring at least one non-

empty adjacent position is also active.

11

3.2. Emergent Dependences from Game Rules

Some pairs of features ϕi and ϕj , i ̸= j, may have strong correlations or210

implications between each other only in certain games, as a result of such a

game’s rules. For example, in the game of Chess, pawns are only allowed to

move diagonally if that results in a capture of an opposing piece. Hence, in this

game, a feature that matches diagonal pawn moves correlates perfectly with a

feature that matches diagonal pawn moves towards an enemy piece. This is215

depicted in Figure 3. Different games may also allow pawns to move diagonally

towards empty positions, and in such games these two features would no longer

be equivalent. Breakthrough is an example of such a game. These features

would still have a strong dependence as described in the previous subsection,

but may not correlate perfectly in all games.220

A related issue is that some features have extremely low or high marginal

probabilities of being active, and are therefore uninformative, as a result of a

game’s rules. For example, in the game of Tic-Tac-Toe, features that require

the destination of an action to be empty are always active because this is also

a requirement for any move to be legal in this game. Similarly, a feature that225

requires the destination of an action to be within two steps of an edge of the

board is always active because this game is played on a grid of 3×3 cells.

3.3. Emergent Dependences from Policies

Finally, there can be dependences between features that are not necessarily

due to the particular game being played, but rather due to the policies used to230

generate playing experience in them. By design, the self-play approaches used

to generate experience for feature discovery and weight training [2, 21] have

some degree of exploration—for diversity in generated experience—but also a

clear bias towards selecting actions that are considered to be strong by the agent

used in self-play. This causes the distribution of states that are experienced—235

and therefore also legal actions that are observed—to be highly non-uniform.

This can result in certain pairs of features very frequently or very rarely co-

occurring in practice, even if perhaps they would not when observing gameplay

12

∗

(a) This feature matches ac-

tions diagonally adjacent to a

white stone.

∗

(b) This feature matches ac-

tions orthogonally adjacent to

a white stone.

∗

(c) This feature matches ac-

tions at two orthogonal steps

from a white stone.

Figure 4: MCTS-based players have a strong tendency to open games of Tic-Tac-Toe in the

centre of the board. Therefore, it is highly likely for every action available in the first turn

of the second player to match either the feature depicted in (a) or the one in (b). If the first

player opens in a corner, the second player also has legal moves in their first turn that match

the feature depicted in (c), but this is rarely observed in self-play between MCTS agents.

from different agents.

Consider, for example, the game of Tic-Tac-Toe, in which players take turns240

placing pieces on a 3×3 grid, and the first player to complete a line of three

wins. MCTS-based players almost always open the game by playing in the

centre of the board.1 This causes certain features (see Figure 4) to have very

high or low marginal probabilities of matching any legal actions in the first turn

of the second player, which could be different if other openings were observed245

more frequently. These high or low marginal probabilities also lead to high or

low co-occurrences with other features that may be less affected by the different

openings.

3.4. Discussion

The subsections above describe various types of dependences between fea-250

tures. Each of these can lead to situations where the probabilities of being

1Players based on algorithms such as αβ-search are more likely to also open in one of the

corners, but MCTS tends to have a preference for the centre of the board because this has a

greater probability of leading to wins against random players.

13

(in)active for some features can be predicted with high (sometimes perfect) ac-

curacy based on the activity of other features. This can lead to redundancies in

sets of features, where some are “unnecessary” in the presence of others. In terms

of computational costs, this is not a major issue in the case of game-agnostic255

dependences (Subsection 3.1), because pattern matching is performed using the

highly efficient “SPatterNet” approach [20], which already leverages such re-

lations to speed up pattern matching. More specifically, this is a technique

that aims to optimise the order in which propositions are evaluated for pattern

matching with a larger set of features, and it can automatically account for the260

game-agnostic relations in this process as listed in Table 1. However, the other

types of dependences cannot be accounted for without domain knowledge of the

particular game being played or the agents that are playing, which means that

redundancies due to these other types are harmful in terms of computational

efficiency.265

In terms of understanding or explaining policies, it is also important to

keep these dependences in mind. The single weight of an individual feature,

without accounting for features that are likely to co-occur or likely not to co-

occur, and their weights, does not necessarily give a good idea of the strength

of actions for which that feature matches. Furthermore, especially in the case270

of perfect correlations, there can be different features that provide equally valid

explanations in theory, but where some may be subjectively viewed as more

representative than others. For example, the two features depicted in Figure 3

could form equally valid explanations for the idea that using a pawn to capture

an enemy is a strong (or weak) move in Chess, but we imagine that humans may275

prefer the rightmost feature since it more explicitly also visualises the enemy

piece.

4. Decision Trees of State-Action Features

Since decision trees are generally considered to be inherently interpretable

models [27, 17], and can also be used to select the most important features280

14

Proposition a Propositions proven by a

x is empty x is empty

x is not owned by p (for any p > 0)

x is not piece i (for any i > 0)

x is not empty x is not empty

x is owned by p x is owned by p

x is not piece i (for any i not owned by p)

x is piece i (if i is the sole type owned by p)

x is not empty

x is not owned by p x is not owned by p

x is not piece i (for any i owned by p)

x is piece i x is piece i

x is not empty

x is not piece j (for any j ̸= i)

x is owned by p (where p is the owner of i)

x is not owned by p (for any p that does not own i)

x is not piece i x is not piece i

x is not owned by p (if i is the sole type owned by p)

Table 1: Game-agnostic relations between propositions in features that the SPatterNet ap-

proach [20] for pattern matching can automatically account for. Propositions a in the left

column, when true, always imply the matching propositions in the right column. In every

proposition, x denotes a site (i.e., a cell or an intersection of a game board). Redundancies

in feature sets due to these relations are therefore not harmful in terms of computational

efficiency. Table reproduced from [20].

15

[61], we look towards them for feature selection (with the ultimate goal of re-

ducing computational overhead whilst preserving strong policies) as well as the

extraction of explainable tactics.

4.1. Decision Tree Structures

When using function approximators for policy training in games or RL, it is285

customary for these functions (often neural networks) to take a representation

of a state s as input, and produce one logit z(s, a) as output for every action a

that may possibly be legal in any state s [12]. Resulting vectors of logits are

transformed into discrete probability distributions over the actions by applying

a softmax (plus invalid action masking [62] in games where some actions are290

sometimes illegal). When such policies are subsequently distilled into decision

trees or rules for explainability, these are typically trained as classifiers that

again use representations of states s as input (splitting on features of states), and

produce probability distributions over all actions (which must all be explicitly

enumerated as potential target classes) as outputs [37, 38, 39]. An example of295

what such a decision tree could look like is depicted in Figure 5. In the example

case of Tic-Tac-Toe, every leaf node outputs a probability distribution over nine

possible actions (some of which may be illegal depending on the input game state

s). In more complex games such as Chess or Shogi, the output distributions

would have to defined for thousands of different elements [5].300

The input and output structures for the original (linear) policies considered

in this paper are different, since they take a representation of a state-action

pair (s, a) as input, and produce only a single logit for that same (s, a) pair

as output. Hence, the most straightforward way to distill such a policy into

a decision tree would be to build a regression tree that takes representations305

of state-action pairs as input (splitting on state-action features), and produces

individual logits as outputs. An example of such a tree is depicted in Figure 6. In

the remainder of this subsection, advantages and disadvantages of this approach,

as well as several other possibilities for structuring (in particular the outputs

of) decision trees, are discussed.310

16

State input s

Centre Left
100%

Centre
100%

False True

False True

Figure 5: Example of a handcrafted policy for Tic-Tac-Toe, modelled as decision tree that takes

states as inputs and produces probability distributions over all possible actions as outputs.

This decision tree can recognise two particular cases of winning actions for the white player,

but otherwise recommends a uniform distribution over all actions.

17

State-action input (s, a)

∗

Output logit = 3.0

∗

Output logit = 3.0Output logit = 0.0

False True

False True

Figure 6: Example logit regression tree for a handcrafted policy for Tic-Tac-Toe, modelled as

a regression tree that takes state-action pairs (s, a) as inputs and produces a single logit for

such a pair as output. This regression tree can detect actions that complete any (assuming

local rotations and reflections of features are used, which we do) orthogonal or diagonal line

by placing the third stone in the middle of such a line, and assigns logit values of 3.0 to such

actions. Any other action is assigned a logit value of 0.0. These outputs are meaningless on

their own, but in combination with logits for other legal actions can easily be transformed

into probabilities by a computer program.

18

4.1.1. Logit Regression Trees

In terms of raw playing strength, regression trees that output logits—exactly

as our original policies do—may be expected to have the highest potential per-

formance. Such a logit regression tree is at least as expressive as a linear policy

is, and—in contrast to some of the other structures described below—does not315

involve any additional approximations. In fact, such a tree could even be more

expressive than a linear policy, because decision trees are non-linear functions

of their input features.

In terms of explainability, we argue that single-logit outputs can be prob-

lematic. Every individual feature used in branching points, as well as the entire

path from root to leaf node, could be considered interpretable, but the logit

output itself would be difficult to understand. In isolation, a logit value z(s, a)

does not have any meaning. A logit z(s, a) only gains some meaning when it is

compared to another logit z(s, a′) for a different action a′ ̸= a that is legal in

the same state s, and even then the exact relationship is somewhat difficult to

understand. The exact relationship is that the ratio of probabilities assigned to

two actions by a policy π is given by the ratio of the exponentials of their logits:

π(s, a)

π(s, a′)
=

exp(z(s, a))∑
b∈A(s) exp (z(s, b))

×
∑

b∈A(s) exp (z(s, b))

exp(z(s, a′))
=

exp(z(s, a))

exp(z(s, a′))
(2)

This relationship is arguably not nearly as easy to interpret as the direct proba-

bilities assigned to all actions at once by classifier trees that take states as inputs320

and enumerate all actions (in domains with small and fixed action spaces) as

potential target classes.

4.1.2. Multiclass State-Action Classification Trees

While the logit outputs z(s, a) for state-action pairs (s, a) discussed above

can be informative for a software agent, they may be difficult for humans to325

interpret. If the goal is to help humans easily recognise actions that are likely

to be weak or strong in general based on local patterns around such actions,

it may be more helpful for a decision tree to be trained to explicitly provide

19

outputs that can be directly interpreted as such qualitative estimates of action

quality. Following this intuition, we propose to train a decision tree that takes330

state-action pairs (s, a) as input, and as output classifies that action in that state

as belonging to one out of a small selection of classes, each of which provides

a qualitative judgement of action quality. More specifically, the following three

classes are used in the implementation and experiments discussed in this paper,

but different partitions would also be possible:335

1. Bottom 25%: label assigned to actions a that are predicted to be among

the worst 25% of legal actions A(s) in the state s.

2. IQR: label assigned to actions a that are predicted to be in the interquar-

tile range (better than bottom 25%, but worse than top 25%) of legal

actions A(s) in the state s.340

3. Top 25%: label assigned to actions a that are predicted to be among the

best 25% of legal actions A(s) in the state s.

Figure 7 depicts an example of such a tree.

In comparison to logit regression trees, multiclass state-action classification

trees involve an additional level of approximation in the sense that larger col-345

lections of inputs that would have distinct outputs in a logit regression tree are

grouped together and are assigned identical target labels for this type of classi-

fication tree. This may be expected to lead to a lower level of playing strength

when used to control a policy, but the output representation is arguably easier

to interpret.350

4.1.3. Best-Action Classification Trees

One potential issue with multiclass state-action classification trees as de-

scribed above is that there is a natural ordering of the output classes (i.e., Top

25% > IQR > Bottom 25%), but neither the model nor the decision tree in-

duction algorithm account for this in any way. For example, it is possible for355

a tree to predict equal probabilities of 0.5 for the Bottom 25% and Top 25%

classes for a given input pair (s, a), with a probability of 0.0 for the IQR class.

20

State-action input (s, a)

∗

100%∗

100%

33.33%

33.33%

33.33%

False True

False True

Top-25% Action

Legend

IQR Action

Bottom-25% Action

Figure 7: Example multiclass classification tree for a handcrafted policy for Tic-Tac-Toe,

modelled as a decision tree that takes state-action pairs (s, a) as inputs and produces a single

classification for such a pair as output. This tree can recognise some winning actions (assuming

this is a policy for the white player), classifying those actions as being likely top-25% actions.

It can also recognise some cases where winning actions are possible but not picked (actions

placing next to an empty cell in between two white pieces), and classifies those as being likely

bottom-25% actions. Any other cases are classified as being equally likely to belong to any of

the three possible classes.

21

This is not strictly wrong: it is very well possible that certain patterns correlate

strongly with both weak and strong actions, whilst not correlating strongly with

“average” actions. However, it may be considered undesirable for the purpose360

of generating explanations of tactics, since such an output distribution does not

give any clear, actionable recommendations. There are techniques to account

for ordinal classes, but they work by transforming a single k-class classification

problem into k − 1 separate binary classification problems [63]. This would re-

sult in a collection of multiple different decision trees, which would also hamper365

interpretability.

To avoid the potential for confusion discussed above, we propose to further

simplify the output space by training a classifier that outputs a single proba-

bility estimate for any given (s, a) input pair. This can be viewed as a binary

classification problem, with “positive” and “negative” classes. The first two types370

of target labels that were considered, but found to be problematic, are:

1. Best-action indicator, i.e. a target class of 1 if and only if π(s, a) =

maxa′ π(s, a′), and 0 otherwise. The core issue with this is that the trained

policiesπ are expected to be imperfect, and these target labels punish ac-

tions a′ with probabilities π(s, a′) close to (but not equal to) the maximum375

too harshly: they are treated as being equal to the worst actions.

2. Probability of playing, i.e. a “soft” target class simply equal to π(s, a). The

core issue with this target label is that it is highly sensitive to the number

of legal actions in a state s: the best action in a state with many legal

actions may have a lower value π(s, a) than a weak action in a different380

state with few legal actions.

Finally, as a target label that does not suffer from either of the issues described

above, we propose to use π(s,a)
maxa′ π(s,a′) as the target label for an input pair (s, a).

The outputs of such a model may intuitively be interpreted as estimators of

the (unnormalised, since they do not add up to 1) probabilities of actions to be385

the best action in their state. This is somewhat similar to the logit regression

tree outputs, but the main difference is that these outputs are on a linear scale,

22

State-action input (s, a)

∗

∗

P (Best Action) = 0.99P (Best Action) = 0.6

False True

∗

P (Best Action) = 0.001P (Best Action) = 0.3

False True

False True

Figure 8: Example best-action classification tree for a handcrafted Tic-Tac-Toe policy, mod-

elled as a binary classification tree that takes state-action pairs (s, a) as inputs, and produces

probability estimates of a being a “best action” in s as outputs.

rather than the exponential scale on which logits should be interpreted. Figure 8

depicts a handcrafted example of this type of tree.

4.1.4. Imbalanced Best-Action Classification Trees390

As a final type of decision tree, we consider one that uses the same target

labels as described in 4.1.3, but where every branch for cases where a feature

evaluates to true is forced to immediately lead to a leaf node. Only branches

followed when tested features evaluate to false can lead to new decision nodes.

This special structure means that the decision tree may be read as a chain395

of if-then-else-if rules. These are arguably even easier to interpret than more

balanced decision trees, since a human can forget about previous features when

navigating down the tree (or list of rules) when “simulating” the decision tree’s

process; as soon as one feature evaluates to true, it is guaranteed to immediately

produce an output for that input. The example decision tree depicted in Figure 8400

23

would have qualified as this type of tree if the “True” branch from the root node

directly led to a single leaf.

4.2. Training Classification and Regression Trees

Classification and regression trees are trained using the customary top-down

tree induction strategy that, at each branching point, greedily selects whichever405

feature maximises some notion of information gain when used to split on [64].

The self-play training process used to train our initial policies [20] collects game

states s encountered during self-play between MCTS-based players in an expe-

rience buffer. These game states, extracted from the experience buffer at the

end of the training process, and the fully trained (linear) policy πθ, are used to410

construct the training data set for the decision trees.

Let D denote a dataset of all state-action pairs (s, a) that can reach a node

in a decision tree for the next feature to split on when building a tree is to

be determined. For example, in the case of a root node, this would simply

be the set of all possible (s, a) pairs such that a ∈ A(s) is a legal action in415

s, and s is one of the game states extracted from the experience buffer. In

the case of a node deeper than the root node, this set would be reduced to

only contain those (s, a) pairs that would lead to the node under consideration,

based on the feature vector ϕ(s, a) and the tests performed in earlier nodes of

the decision tree. Let ϕi be a candidate feature under consideration to be split420

on. Let DT
ϕi

⊆ D denote the subset of data that would follow the branch for

ϕi(s, a) = 1, and DF
ϕi

⊆ D the remaining subset for the case where ϕi(s, a) = 0.

The following subsections describe the splitting criteria used for the various

types of decision trees proposed in this paper. For all types of decision trees,

splits that result in either one of the branches representing k ≤ 5 state-action425

pairs are prohibited, and splits that do not provide any improvement whatsoever

with respect to the splitting criterion in comparison to the current (unsplit) node

are also prohibited.

24

4.2.1. Training Logit Regression Trees

The splitting criterion used for logit regression trees is to select features that

lead to a minimal sum of squared errors between the target logits z(s, a) =

θ⊤ϕ(s, a) and the logits predicted by the regression tree. It is assumed that a

leaf node of a logit regression tree simply predicts the mean of the target logits

z(s, a) for all (s, a) pairs in the dataset that lead to that leaf. With some abuse

of notation, let z̄(D) denote the mean of all the z(s, a) values for all (s, a) pairs

in a dataset D. The sum of squared errors resulting from a split on a candidate

feature ϕi is given by Equation 3:

SSE(D, ϕi) =
∑

(s,a)∈DT
ϕi

(
z(s, a)− z̄(DT

ϕi
)
)2

+
∑

(s,a)∈DF
ϕi

(
z(s, a)− z̄(DF

ϕi
)
)2

(3)

4.2.2. Training Multiclass State-Action Classification Trees430

As described in Subsubsection 4.1.2, every state-action pair (s, a) is assigned

one class c(s, a) ∈ C as target label, where in this paper a set of three possible

classes C = {Bottom25%, IQR, Top25%} is used. Let 0 ≤ P (c′ | D) ≤ 1 denote

the proportion of state-action pairs (s, a) in a dataset D such that c(s, a) =

c′. Let |D| denote the cardinality of a dataset D, i.e. the number of state-

action pairs it contains. Let H(D) = −
∑

c′∈C P (c′,D) log2 (P (c′,D)) denote

the entropy of a dataset D. The feature ϕi used for splitting is the one that

maximises information gain, which is computed as in Equation 4:

IG(D, ϕi) = H(D)−
|DT

ϕi
|

|D|
H(DT

ϕi
)−

|DF
ϕi
|

|D|
H(DF

ϕi
) (4)

4.2.3. Training Best-Action Classification Trees

As described in Subsubsection 4.1.3, smooth target labels π(s,a)
maxa′ π(s,a′) are

used, rather than discrete (binary) class labels for the best-action classifica-

tion trees. This means that, even though we may intuitively think of them as

classifiers—due to the outputs being interpretable as estimates of the proba-435

bility of belonging to a best-action class—they technically function more like

regression trees. Therefore, a splitting criterion similar to Equation 3 is used,

with π(s,a)
maxa′ π(s,a′) rather than logits as target labels. The key distinction with

25

logit regression trees is that these outputs are on a linear scale, and bounded in

the [0, 1] range, whereas the logit outputs are on an exponential scale, with an440

unbounded range.

4.2.4. Training Imbalanced Best-Action Classification Trees

The primary distinction between the imbalanced and the regular best-action

classification trees is that, in the imbalanced version, further splits are never

created after at least one feature has evaluated to true. Two variants of this445

idea are considered.

The first variant, referred to as the asymmetric variant, only takes into

consideration the sum of squared errors over the subset of data DT
ϕi

in the “true”

branch of a potential split on a feature ϕi. The rationale behind this is that,

if we read such an imbalanced tree as a chain of if-then-else-if rules, purity in450

the subset of data that a rule applies to may be valued more highly than purity

in the other subset of data that a rule does not apply to. If a rule applies,

the model gives a direct recommendation, which we can be more confident in

if the dataset it applies to is pure. In contrast, if a rule does not apply, we

simply drop down to subsequent rules (if any exist), rather than giving a direct455

recommendation.

The second variant, referred to as the symmetric variant, sums up the sums

of squared errors for both subsets of data resulting from a split, as per the

usual splitting criterion. Note that “asymmetric” and “symmetric” refer to

(a)symmetry in which subsets of data play a role in splitting criteria, whereas460

“imbalanced” is used to describe the shape of the tree.

4.3. Policy Training Objective

All of the splitting criteria discussed previously for the various types of de-

cision trees depend on the parameters θ of a fully trained policy πθ—either

through the logits z(s, a) it computes for state-action pairs (s, a), or the action465

probabilities πθ(s, a) computed by such a policy. A common training objective

for training such a policy from self-play, following Expert Iteration [65] and Al-

26

phaGo Zero [2], is to minimise the cross-entropy (CE) between the policy π and

an expert policy πM , which is typically derived from the distribution of visit

counts of a tree search process by MCTS.470

Soemers et al. [66] remarked that MCTS (by design) allocates a part of

its search budget on exploration, and that this means that a policy π trained

to mimic the behaviour of MCTS through such a CE-based objective is also

explicitly trained to have some degree of exploratory behaviour. While this is

desirable when such a policy is subsequently used to guide future tree searches475

(which should again have some degree of exploration), it may be less desirable

for extracting explainable tactics or a small set of key features. In comparison to

CE, an alternative training objective referred to as Tree-Search Policy Gradients

(TSPG) [66] was shown to (i) produce policies that are stronger in terms of

standalone playing strength (without tree search), (ii) have a more precise focus480

with larger weights distributed over a smaller set of features, and (iii) have less

entropy in the resulting probability distributions over actions. Due to these

aspects, the TSPG objective was hypothesised to be more suitable than CE

for goals such as the ones considered in this paper. To further evaluate this,

decision trees trained on policies optimised for TSPG as well as the standard485

CE objective are included in the following experiments.

5. Evaluation

For a quantitative empirical evaluation, we focus on comparing the playing

strength of the various types of decision trees proposed in this paper to that

of the full policies (using all discovered features). This is comparable to the490

experiments used in other work on explainable RL based on various types of

decision trees and rules [40, 37, 38, 39], and can also give an indication of

whether or not the trees successfully select and focus on the most important

features. The following types of trained agents are considered:

• Logit (Obj; d): logit regression tree (see 4.1.1) with a maximum depth495

of d, trained to mimic the full policy with objective Obj (either CE or

27

TSPG).

• Multiclass (Obj; d): multiclass state-action classification tree (see 4.1.2)

with a maximum depth of d, trained to predict between three classes

(bottom 25%, IQR, top 25%), based on the full policy with objective Obj500

(either CE or TSPG).

• Best-Action (Obj; d): best-action classification tree (see 4.1.3) with a

maximum depth of d, trained for binary classification (output probability

of being best action), based on the full policy with objective Obj (either

CE or TSPG).505

• Asymm. Imb. Best-Action (Obj; d): imbalanced best-action classifi-

cation tree (see 4.1.4) with a maximum depth of d, with imbalanced tree

structure and asymmetric splitting criterion (see 4.2.4), based on the full

policy with objective Obj (either CE or TSPG).

• Symm. Imb. Best-Action (Obj; d): imbalanced best-action classifi-510

cation tree (see 4.1.4) with a maximum depth of d, with imbalanced tree

structure and symmetric splitting criterion (see 4.2.4), based on the full

policy with objective Obj (either CE or TSPG).

• Full Policy (CE): the full (linear) policy trained for the standard Cross-

Entropy (CE) objective, using all discovered features.515

• Full Policy (TSPG): the full (linear) policy trained for the Tree-Search

Policy Gradients (TSPG) objective [66], using all discovered features.

Unless specified otherwise, these agents select actions as follows. The agents

based on logit regression trees sample actions according to a softmax over the

output logits from their trees. The agents based on multiclass classification520

trees sample actions proportionally to P (Top 25%) × (1 − P (Bottom 25%)).

The agents based on any of the best-action classification trees sample actions

proportionally to their outputs. The full (linear) policies sample actions accord-

28

ing to a softmax over the logits predicted by their dot products. Additionally,

two types of agents that do not involve any training are included:525

• Random: an agent that selects actions uniformly at random.

• UCT: a standard UCT agent [23, 25], using 1 second of thinking time per

move (note that all other agents play significantly faster than this, since

they do not run any tree search).

All agents, training code, games, and experiments are implemented in the Ludii530

general game system [52, 53].2

5.1. Results in Small Games

First, results are presented from experiments in a set of thirteen “small

games.” These are sequential, deterministic, 2-player games played on rela-

tively small boards—each having at most eleven playable sites. In all of these,535

basic tree search algorithms such as UCT, and potentially even trained poli-

cies based on simple features, may be expected to be capable of strong or even

optimal play. The games included in this set are Akidada, Alquerque de Tres,

Haretavl, Hat Diviyan Keliya, Ho-Bag Gonu, Jeu Militaire, Kaooa, Madelinette,

Mu Torere (with the Complete (Observed) ruleset), Mu Torere (with the Simple540

(Suggested) ruleset), Pong Hau K’i, Three Men’s Morris, and Tic-Tac-Toe.

For each of these games, every type of decision tree is trained with maximum

depths of d ∈ {1, 2, 3, 4, 5, 10}. This means that we ultimately end up with

(5 × 2 × 6) + 4 = 64 distinct agents: 5 types of decision trees, each trained

for 2 objectives (CE and TSPG), each with 6 different depth limits, plus the545

2 full policies (CE and TSPG), the random agent, and the UCT agent. Each

of these agents is evaluated in every game by playing 50 matches (25 as first

and 25 as second player) against each of the 63 other agents, for a total of

50 × 63 = 3,150 matches per game, per agent. Win percentages averaged over

all possible opponents in a game are used as the primary measure of playing550

2Source code is available at https://github.com/Ludeme/Ludii/.

29

https://github.com/Ludeme/Ludii/

strength. Draws are counted as half wins for each player. If a match did not

end after 250 moves, it is declared a draw.

Figure 9 depicts the average win percentages of all of these agents, over all

thirteen small games, on the y-axis. The maximum depth d for agents based on

decisions trees is varied along the x-axis. The four agents that are not based555

on decision trees are simply plotted as horizontal lines. Policies optimised for

CE (as well as Random) are drawn as dotted lines, and policies optimised for

TSPG are (as well as UCT) are drawn as solid lines.

To summarise the results across all thirteen small games in a single plot,

performance profiles [67] are provided for all types of agents (only displaying560

decision tree agents with d = 5) in Figure 10. The x-axis shows average UCT-

normalised scores, which are scores (win percentages) that have been linearly

rescaled on a per-game, per-opponent basis, such that 1.0 corresponds to the

performance of UCT in that game against that opponent. The y-axis shows the

fraction of runs for which an agent obtained a score greater than any given UCT-565

normalised score τ . Shaded areas indicate 95% bootstrap confidence intervals

based on 10,000 bootstrap replicates, sampling from the runs against different

opponents. Note that this means that the intervals indicate uncertainty due

to variability in performance with respect to different opponents, rather than

variability due to randomness in any training or evaluation processes.570

5.2. Results in Other Games

Where the results described above were for a set of thirteen small games, in

this section we look towards a different set of thirty other games: Alquerque,

Amazons, Ard Ri, Arimaa, Ataxx, Bao Ki Arabu (Zanzibar 1), Bizingo, Break-

through, Chess, English Draughts, Fanorona, Fox and Geese, Go, Gomoku,575

Gonnect, Havannah, Hex, Knightthrough, Konane, Lines of Action, Omega,

Pentalath, Pretwa, Reversi, Royal Game of Ur, Shobu, Surakarta, Tablut, XII

Scripta, and Yavalath. All of these are sequential, 2-player games, with most of

them being deterministic, but some stochastic. In contrast to the small games,

plain UCT agents or trained policies using only simple patterns cannot be ex-580

30

2 4 6 8 10d
0

25

50

75

100

W
in

%

Akidada

2 4 6 8 10d
0

25

50

75

100

W
in

%

Alquerque de Tres

2 4 6 8 10d
0

25

50

75

100

W
in

%

Haretavl

2 4 6 8 10d
0

25

50

75

100

W
in

%

Hat Diviyan Keliya

2 4 6 8 10d
0

25

50

75

100

W
in

%

Ho-Bag Gonu

2 4 6 8 10d
0

25

50

75

100

W
in

%

Jeu Militaire

2 4 6 8 10d
0

25

50

75

100

W
in

%

Kaooa

2 4 6 8 10d
0

25

50

75

100

W
in

%

Madelinette

2 4 6 8 10d
0

25

50

75

100

W
in

%

Mu Torere; Complete (Observed) Ruleset

2 4 6 8 10d
0

25

50

75

100

W
in

%

Mu Torere; Simple (Suggested) Ruleset

2 4 6 8 10d
0

25

50

75

100

W
in

%

Pong Hau K’i

2 4 6 8 10d
0

25

50

75

100

W
in

%

Three Men’s Morris

2 4 6 8 10d
0

25

50

75

100

W
in

%

Tic-Tac-Toe

Logit (CE; d)

Logit (TSPG; d)

Multiclass (CE; d)

Multiclass (TSPG; d)

Best Action (CE; d)

Best Action (TSPG; d)

Asymm. Imb. Best Action (CE; d)

Asymm. Imb. Best Action (TSPG; d)

Symm. Imb. Best Action (CE; d)

Symm. Imb. Best Action (TSPG; d)

Full Policy (CE)

Full Policy (TSPG)

Random

UCT

Figure 9: Win percentages, averaged over all other agents as opponents, for various types

of agents in thirteen small games. Data plotted for maximum decision tree depths d ∈

{1, 2, 3, 4, 5, 10} along x-axis.

31

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
UCT-Normalised Score (τ)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

ru
ns

w
it

h
sc

or
e
>
τ

Logit (CE; d = 5)

Logit (TSPG; d = 5)

Multiclass (CE; d = 5)

Multiclass (TSPG; d = 5)

Best-Action (CE; d = 5)

Best-Action (TSPG; d = 5)

Asymm. Imb. Best-Action (CE; d = 5)

Asymm. Imb. Best-Action (TSPG; d = 5)

Symm. Imb. Best-Action (CE; d = 5)

Symm. Imb. Best-Action (TSPG; d = 5)

Random

Full Policy (CE)

Full Policy (TSPG)

Figure 10: Performance profiles [67] for several agents, summarising performance across all

thirteen small games. Performance is measured by UCT-normalised scores τ , which are win

percentages that have been linearly rescaled on a per-game, per-opponent basis, with the

performance of UCT always being equal to 1.0.

32

pected to play (close to) optimally in these games, but meaningful (better than

random) play may still be expected.

The overall setup of experiments in these games is similar to the setup de-

scribed above for small games, with two primary differences. Firstly, UCT is

no longer included in the evaluations in order to avoid the large amount of585

computation time required by this agent for evaluations against a large number

of possible opponents (63 other agents) in such a large set of games, including

many relatively large and complex games. Secondly, matches are allowed to

continue for up to 1,000 moves rather than 250 before declaring them a draw,

since the limit of 250, which is appropriate for the small games, may be too low590

for many of these larger games.

Figure 11 summarises the results for all 63 agents by reporting the median,

interquartile mean, and mean win rate for every agent against all other agents,

across all thirty games. The 95% bootstrap confidence intervals represent vari-

ability in performance across different games and different opponents, rather595

than variability due to stochasticity in training or evaluation processes. Fig-

ure 12 depicts performance profiles for the same experiment, restricted to only

depth limits of d = 5 for agents based on decision trees for visual clarity.

5.3. Biasing MCTS with Trained Features

While previous work has already demonstrated that full sets of features600

(without subsequent selection of a smaller subset) can improve the playing

strength of MCTS by biasing it in many games, it was also found that they

can reduce the playing strength in some games [21, 22]. Such reductions in

playing strength are likely due to the computational overhead incurred by us-

ing features, which may be mitigated by using only smaller subsets of features.605

Therefore, the performance of biased versions of MCTS—biased by full policies

as well as decision trees—is evaluated against the standard UCT baseline, on

the complete set of thirty games also used in the previous subsection. Every

agent uses one second of search time per move. For every game and every

matchup, 150 evaluation matches were run (with every agent playing each side610

33

0.45 0.60 0.75

Random
Full Policy - TSPG
Full Policy - CE

d = 10
d = 5
d = 4
d = 3
d = 2

Symm. Imb. Best-Action - TSPG; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Symm. Imb. Best-Action - CE; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Asymm. Imb. Best-Action - TSPG; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Asymm. Imb. Best-Action - CE; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Best-Action - TSPG; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Best-Action - CE; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Multiclass - TSPG; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Multiclass - CE; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Logit - TSPG; d = 1
d = 10
d = 5
d = 4
d = 3
d = 2

Logit - CE; d = 1

Median

0.45 0.60 0.75

IQM

0.45 0.60 0.75

Mean

Average Win Percentage

Figure 11: Aggregate metrics for the performance levels of all 63 agents in the set of thirty

games. Median, interquartile mean (IQM), and mean of the win rates are computed over runs

in all games against all possible opponents. Coloured bars represent 95% bootstrap confidence

intervals, estimated from 10, 000 bootstrap replicates using the rliable library [67].

34

0.0 0.2 0.4 0.6 0.8 1.0
Average Winrate (τ)

0.00

0.25

0.50

0.75

1.00

F
ra

ct
io

n
of

ru
ns

w
it

h
sc

or
e
>
τ

Logit (CE; d = 5)

Logit (TSPG; d = 5)

Multiclass (CE; d = 5)

Multiclass (TSPG; d = 5)

Best-Action (CE; d = 5)

Best-Action (TSPG; d = 5)

Asymm. Imb. Best-Action (CE; d = 5)

Asymm. Imb. Best-Action (TSPG; d = 5)

Symm. Imb. Best-Action (CE; d = 5)

Symm. Imb. Best-Action (TSPG; d = 5)

Random

Full Policy (CE)

Full Policy (TSPG)

Figure 12: Performance profiles summarising the performance of several agents (only dis-

playing results for decision trees with depth limits of d = 5) across thirty different games.

Performance is measured by the win rate averaged over all possible opponents (all other

agents, including trees with depth limits d ̸= 5).

35

0.0 0.2 0.4 0.6 0.8 1.0
Average Winrate Against UCT (τ)

0.00

0.25

0.50

0.75

1.00
F

ra
ct

io
n

of
ru

ns
w

it
h

sc
or

e
>
τ

MCTS with Full Policy (CE)

MCTS with Multiclass (CE; d) Tree (d = 10)

MCTS with Multiclass (CE; d) Tree (d = 5)

MCTS with Multiclass (CE; d) Tree (d = 4)

MCTS with Multiclass (CE; d) Tree (d = 3)

MCTS with Multiclass (CE; d) Tree (d = 2)

MCTS with Multiclass (CE; d) (d = 1)

Figure 13: Performance profiles summarising the performance of MCTS agents biased by

several different policies against UCT, across thirty different games.

of the matchup 75 times).

Because policies trained for the TSPG objective were previously found not to

provide additional value to MCTS [66], we focus only on policies trained for the

CE objective. This experiment is repeated with the Logit trees (because their

output representation is the same as that of the full policies), and Multiclass615

trees (because Multiclass (CE; 5) appears to outperform Logit (CE; 5) in

Figure 12).

Table 2 lists the median, interquartile mean (IQM), and mean win rates of

MCTS agents biased by various different policies against UCT, aggregated over

the thirty games. Figure 13 additionally depicts performance profiles for MCTS620

agents biased by Multiclass trees (as well as the full policy) against UCT.

Performance profiles for agents biased by Logit trees are omitted to save space

(these results were similar to those for the Multiclass trees).

36

Win rate against UCT

Agent Median IQM Mean

MCTS with Logit (CE; d) trees

d = 1 0.61 0.66 0.64

d = 2 0.72 0.70 0.68

d = 3 0.69 0.71 0.70

d = 4 0.70 0.70 0.69

d = 5 0.63 0.66 0.66

d = 10 0.67 0.62 0.59

MCTS with Multiclass (CE; d) trees

d = 1 0.66 0.62 0.60

d = 2 0.66 0.67 0.66

d = 3 0.73 0.72 0.67

d = 4 0.72 0.72 0.68

d = 5 0.67 0.71 0.66

d = 10 0.63 0.60 0.56

MCTS with Full Policy (CE) 0.69 0.64 0.58

Table 2: Median, interquartile mean (IQM), and mean win rates (across thirty games) of

MCTS agents biased by various trained policies against UCT.

37

5.4. Discussion

The plots in Figure 9 show that, generally, the playing strength tends to625

increase (or eventually stabilise) as the depth limits of decision trees increase in

the small games. As expected, deeper decision trees can express more powerful

policies. The imbalanced trees tend to perform worse than the (larger) balanced

trees, and trees (as well as non-tree policies) trained for the TSPG objective tend

to outperform policies trained for the CE objective. These plots do not provide630

a clear ranking among the other types of decision trees (Logit, Multiclass, and

Best-Action), since this differs from game to game.

Three of the thirteen small games appear to be exceptions, in that most types

of policies have similar levels of playing strength, and these remain constant

regardless of depth limits. This may be an indication that these games have a635

low strategic (or tactical) depth [68], but it may also simply indicate that the

training algorithms fail to learn relevant tactics. For the first of these three

games, Alquerque de Tres, an αβ-search [69] of less than a second easily finds

that optimal play leads to a draw after six moves, which indeed points to a

game with relatively little strategic depth. The second game, Ho-Bag Gonu,640

keeps going on infinitely under perfect play, and requires a chain of multiple

unforced errors before an optimal player can capitalise and obtain a victory.

The third game, Mu Torere; Simple (Suggested Ruleset) uses a flawed (as a

result of a mistranslation) ruleset [70, 15] in which the first player can win in

a single move. This is in contrast to Mu Torere; Complete (Observed Ruleset),645

which uses the ruleset based on the correct translation, for which a greater

variety in performance levels between the policies is observed. For all three of

these games, we find that sufficiently deep trees can learn to play optimally

against UCT, but they fail to learn how to exploit mistakes by suboptimal

players. In the case of Mu Torere, no features or trees are learnt for the second650

player at all, because all the experience collected from self-play by MCTS-based

agents consists of the first player winning in a single move. These issues could

potentially be improved by introducing additional exploration in the self-play

process.

38

The performance profiles depicted in Figure 10 suggest that, on average,655

Logit outperforms Multiclass (for the TSPG objective), and Multiclass outper-

forms Best-Action, followed by the Symmetric and Asymmetric variants of the

Imbalanced Best-Action classification trees. This ordering corresponds to the

number of simplifications and approximations made for the sake of arguable

improvements with respect to interpretability. The output type of Logit trees is660

equal to the output type of the original policies, but difficult to interpret. The

Multiclass classification tree simplifies the output representation to a three-

class problem, and the Best-Action classification tree further simplifies this to a

binary classification problem. The Symmetric Imbalanced Best-Action tree im-

poses additional constraints on the shape of the tree (also causing it to use fewer665

features), and the Asymmetric variant furthermore adjusts the splitting crite-

rion. However, these differences in performance tend to be relatively small, in

particular among the top three decision tree types. One exception is that, when

training for the cross-entropy objective, Multiclass trees appear to outperform

Logit trees.670

For the set of larger games, Figures 11 and 12 paint a similar overall picture

in terms of ranking decision tree types by playing strength, albeit with more

pronounced differences between the types. Policies trained for the TSPG objec-

tive also have a clearer advantage over policies trained for CE, with Figure 11

even showing that some TSPG trees limited to a depth of d = 1 perform at a675

similar level to CE trees limited to a depth of d = 10. Again, Multiclass trees

trained for the CE objective outperform Logit trees for this objective. We hy-

pothesise that using the less fine-grained output representation of the Multiclass

trees may implement a helpful form of regularisation.

Table 3 provides upper bounds on the numbers of distinct features that680

various types of policies may use. The full policy always has up to 400 new

features generated from self-play (but possibly fewer if the training process

takes too long). The number of (atomic) features that are used to initiate

a training process can vary greatly depending on the game. We focused on

displaying and discussing results for the trees limited to d = 5, since these are685

39

Number of Distinct Features

Policy Initial Feature Set From Training Total

Balanced Decision Trees

d = 1 1

d = 2 ≤ 3

d = 3 ≤ 7

d = 4 ≤ 15

d = 5 ≤ 31

d = 10 ≤ 1023

Imbalanced Decision Trees

d = 1 1

d = 2 ≤ 2

d = 3 ≤ 3

d = 4 ≤ 4

d = 5 ≤ 5

d = 10 ≤ 10

Full Policy 72–452 ≤ 400 ≤ 472–852

Table 3: Upper bounds on the numbers of distinct features that various policies may use.

40

guaranteed to use substantially fewer features than the full policy. The larger

trees limited to d = 10 might use the full feature set, which makes evaluating

them less interesting with respect to the potential use of decision trees for feature

selection.

The results in Table 2 show that, according to all of the three different690

aggregate statistics (median, IQM, and mean), MCTS agents biased by any

of the trained policies tend to outperform UCT over the set of thirty games.

Note that there may of course be individual games where this is not the case.

In general, it appears that the best results tend to be obtained by using trees

limited to depths of 3 or 4. The observation that such policies tend to outperform695

the larger trees and the full policies suggests that feature selection can indeed

improve playing strength, likely due to a reduction in computational overhead.

The performance profiles in Figure 13 tend to intersect many times. This

suggests that there is no clear single restriction on the size of trained policies that

consistently works best for biasing MCTS in all games. Only the full policies700

and the largest trees, with a depth limit of d = 10, somewhat stand out as likely

being the worst performers. In the top-left section of the plot, the smallest tree

restricted to d = 1 has the best performance level; this policy (with the lowest

computational overhead) has the lowest number of cases with an extremely

poor performance level. In the bottom-right section of the plot, the trees with705

depth limits of 4 and 5 have the best performance levels; these policies have

the greatest likelihood of delivering extremely strong levels of performance (win

rates exceeding 0.8).

5.5. Case Studies

In addition to the quantitative results focused on playing strength, we man-710

ually inspect several decision trees and the features they use for two different

games. This gives an impression of the ways in which we can learn about the

games’ tactics as well as the AI training process.

41

State-action input (s, a)

∗

Output logit = 17.32Output logit = 0.04

False True

(a) Learnt tree for Logit (TSPG; 1).

State-action input (s, a)

∗

P (Best Action) = 0.995P (Best Action) = 0.186

False True

(b) Learnt tree for Best-Action (TSPG; 1).

Figure 14: Two trees with depth limits of d = 1 that were built for the game of Tic-Tac-Toe.

A shaded square indicates that that position must be an “off-board” position (i.e., not exist

as a part of the board). A small white square indicates a position that must be empty.

5.5.1. Tic-Tac-Toe

Figure 14 depicts two trees, each restricted to a maximum depth of d = 1,715

that were learnt for Player 1 (the white player) for the game of Tic-Tac-Toe.

The tree in Figure 14(a) is a Logit regression tree, and the one in Figure 14(b)

is a Best-Action classification tree. Due to the depth limit of d = 1, each tree is

limited to only a single feature.

Both trees have selected sensible features that are clearly relevant to the720

game, but different ones. The Logit regression tree has selected a feature that

strongly recommends playing below a consecutive line of two crosses, which

prevents the opponent from making a winning move in the next turn. Note

that, due to rotations and reflections, this feature can also apply to moves that

block orthogonal lines by placing a circle to their left, right, or above them.725

However, blocking lines by placing a stone in between two opposing pieces, or

blocking diagonal lines, would require additional features. It should be remarked

that this feature also has a redundant constraint: it requires a hypothetical site

diagonally below the recommended action to be off the board. Because the

game is played on a 3×3 grid of square cells, the constraint is already implied730

by the rest of the feature. Hence, an equivalent feature (which would likely

42

be preferable from the point of view of interpretability) could simply omit this

constraint. This equivalence is emergent from the game’s rules, as discussed in

3.2.

The feature used by the Best-Action classification tree is one that recom-735

mends playing in a position that has two opposite diagonal connections to empty

cells. On the 3×3 grid of Tic-Tac-Toe, the only cell that can ever satisfy this

condition is the centre cell. This feature no longer recommends playing in the

centre if at least two corners on the same side of the board are already occupied,

so in theory it is different from a pure centre-detector. However, in practice,740

it is almost equivalent due to the strong preference of many agents—such as

MCTS agents, but also the policy of this decision tree itself—to immediately

play in the centre in the very first move of the game. This is an example of

a dependence between features that emerges from the policies used to play, as

discussed in 3.3.745

5.5.2. Hex

Hex is a 2-player connection game, played on a (by default 11×11) rhombus

of hexagonal cells, where each player has the objective of creating a connection

between two opposite sides of the board with pieces of their colour. For this

game, there is extensive documentation available of patterns, tactics, and strate-750

gies that work well for humans [71, 72] as well as AI players [49, 50]. Figure 15

depicts several features for this game.

The feature in Figure 15(a) is selected as the first feature by Logit (TSPG;

d) trees. In the case of such a tree restricted to d = 1, it predicts a logit of 4.16

for actions that match the feature, and 25.86 otherwise, which means that it755

strongly discourages such moves. We are not aware of this having any particular

strategic or tactical relevance, and suspect it is simply an artifact resulting from

the limited playing strength of the MCTS agents used in self-play training.

The feature in Figure 15(b) is selected as the first feature by Multiclass

(TSPG; d) trees. The tree restricted to d = 1 predicts {P (Bottom 25%) = 3.7×760

10−4, P (IQR) = 0.98, P (Top 25%) = 0.02} for actions that match the feature,

43

∗
(a)

∗

R1

(b)

∗

(c)

∗

(d)

Figure 15: Four features for the first player (white) in the game of Hex. (a) The first feature

selected by Logit (TSPG; d) trees. It matches any move in the second ring of cells from the

edge of the board. (b) The first feature selected by Multiclass (TSPG; d) trees. It matches

any move that has an adjacent position which is closer to the region with index 1 (which, in

Ludii, is the set of all cells along the black edges, which the black player aims to connect)

than the position of the move. In practice, this feature applies to any move except for moves

along the black board edges. (c) The first feature selected by Best-Action (TSPG; d) trees,

including imbalanced variants. Note that the undecorated cells are unrestricted; they need

not be empty. (d) A bridge intrusion feature, which is a well-known tactic for Hex to stop

the two black stones from connecting.

44

and {P (Bottom 25%) = 0.07, P (IQR) = 0.93, P (Top 25%) = 4.1 × 10−4} for

actions that do not match the feature. This means that the feature is used

to slightly discourage playing in either of the opponent’s goal regions, which

may indeed be a useful basic strategy for AI. However, the fact that actions are765

classified as being overwhelmingly likely to belong to the IQR class regardless

of whether or not the feature matches, with probabilities of 0.98 and 0.93,

respectively, arguably makes for questionable advice to humans.

The feature in Figure 15(c) is selected as the first feature by Best-Action

(TSPG; d) trees. The tree restricted to d = 1 predicts a probability of 0.22 of770

being the best action for actions that match the feature, versus a probability

of 0.01 for actions that do not match the feature. The action encouraged by

this feature prevents what could otherwise become a future connection between

the two opposing (black) pieces. It could be viewed as a longer-range, less

“urgent” variant of the feature depicted by Figure 15(d), which in turn closely775

relates to the well-known concepts of virtual connections and bridges in Hex and

many other connection games [71, 72]. Patterns related to this strategy have

also previously been used to improve the playing strength of UCT in several

connection games, including Hex [49]. The feature depicted in Figure 15(c) is

also used by the other types of decision trees at deeper levels; at depth d = 3780

for the Logit regression tree, and depth d = 2 for the Multiclass classification

tree. Note that the formation of the two black pieces in Figure 15(c) would,

in the absence of other pieces, have formed a loose connection, which Browne

[71] describes as an intermediate Hex strategy. Hence, this feature could also

be viewed as the final step of an attack against such a loose connection by the785

white player.

6. Conclusion

We have explored the problem of distilling linear policies for game-playing—

in this case based on local patterns that are matched to the game state in the

spatial area around actions—into various forms of decision trees, for a wide vari-790

45

ety of board games. Decision trees inherently perform feature selection, meaning

that they can be used to identify key features from a substantially larger set of

features used in the original policies. Furthermore, decision trees are generally

considered to be highly interpretable models, making them a popular choice

for explaining policies in RL. Many of the games considered in this paper have795

substantially larger action spaces than environments used in previous work on

explaining policies. Therefore, we proposed and evaluated a variety of differ-

ent output representations for decision trees that take state-action pairs, rather

than just states, as inputs. These provide per-action advice in a variety of forms,

with some hypothesised to be more readily interpretable than others.800

Empirical evaluations in a set of thirteen small games, and an additional set

of thirty larger games, show that the performance (in terms of playing strength)

of different types of decision trees tends to decrease as the output representations

are simplified for the sake of (hypothesised) improvements in interpretability,

but this differs from game to game. The Logit regression trees in particular805

tend to perform close to the level of the full policies, with significantly lower

total feature counts (for depth limits up to and including d = 5) and lower

feature counts along any single path from root to leaf. Decision trees trained for

the Tree-Search Policy Gradients objective [66] convincingly outperform those

with equal feature counts and depth limits trained for the standard cross-entropy810

objective. Full policies as well as all sizes of decision trees are found to be capable

of improving the playing strength of MCTS agents in expectation over thirty

different games. Mid-sized trees (for the Multiclass type and CE objective), with

depth limits of about 3 or 4, appear to provide the most stable improvements.

This suggests that using these decision trees for feature selection can improve815

the playing strength of biased MCTS agents. Taking two games (Tic-Tac-Toe

and Hex) as case studies in which we manually inspect the learnt trees and the

features they focus on, we find primarily features that are easily recognised as

relevant to the games’ strategies and tactics, with a small number of features

for which their importance or relevance is not immediately clear to us.820

In this work, feature selection (by building decision trees) was performed

46

as a separate step after fully training a policy. During that original policy

training process, the set of features only ever grows. A core reason for not

already removing any features during that process is that “irrelevant” features

may still be useful for building compound features, and therefore there is a825

risk that removing features too early hampers the ability to construct valuable

new features too much. An interesting avenue for future research would be to

interleave feature removal in that process in a manner that accounts for such a

risk. Given the ability to obtain small sets of key features, another interesting

direction for future work would be to use such small sets of features in move830

hash codes for various enhancements of tree search algorithms, such as FAST

[73], PPAF [74], or move groups [75, 76, 77].

Acknowledgements

This research is funded by the European Research Council as part of the

Digital Ludeme Project (ERC Consolidator Grant #771292) led by Cameron835

Browne at Maastricht University’s Department of Data Science and Knowledge

Engineering. This work was carried out on the Dutch national e-infrastructure

with the support of SURF Cooperative. We wish to thank Cameron Browne

and Mark Winands for feedback on earlier drafts of the paper. We thank the

anonymous reviewers for helpful feedback on the paper.840

References

[1] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of845

Go with deep neural networks and tree search, Nature 529 (2016) 484–489.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,

47

L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Mastering the

game of Go without human knowledge, Nature 550 (2017) 354–359.850

[3] M. Moravčík, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis,

K. Waugh, M. Johanson, M. Bowling, Deepstack: Expert-level artificial

intelligence in heads-up no-limit poker, Science 356 (2017) 508–513.

[4] N. Brown, T. Sandholm, Superhuman AI for heads-up no-limit poker:

Libratus beats top professionals, Science 359 (2017) 418–424.855

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,

D. Hassabis, A general reinforcement learning algorithm that masters chess,

shogi, and Go through self-play, Science 362 (2018) 1140–1144.

[6] OpenAI, C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Den-860

nison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray,

C. Olsson, J. Pachocki, M. Petrov, H. Pondé de Oliveira Pinto, J. Raiman,

T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,

F. Wolski, S. Zhang, Dota 2 with large scale deep reinforcement learning,

https://arxiv.org/abs/1912.06680, 2019.865

[7] N. Brown, T. Sandholm, Superhuman AI for multiplayer poker, Science

365 (2019) 885–890.

[8] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,

J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan,

M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jader-870

berg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden,

Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff, Y. Wu,

R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul,

T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, D. Silver, Grandmas-

ter level in StarCraft II using multi-agent reinforcement learning, Nature875

575 (2019) 350–354.

48

https://arxiv.org/abs/1912.06680

[9] T. Cazenave, Y.-C. Chen, G. Chen, S.-Y. Chen, X.-D. Chiu, J. Dehos,

M. Elsa, Q. Gong, H. Hu, V. Khalidov, C.-L. Li, H.-I. Lin, Y.-J. Lin,

X. Martinet, V. Mella, J. Rapin, B. Roziere, G. Synnaeve, F. Teytaud,

O. Teytaud, S.-C. Ye, Y.-J. Ye, S.-J. Yen, S. Zagoruyko, Polygames: Im-880

proved zero learning, ICGA Journal 42 (2020) 244–256.

[10] A. Fickinger, H. Hu, B. Amos, S. Russell, N. Brown, Scalable online plan-

ning via reinforcement learning fine-tuning, in: Advances in Neural Infor-

mation Processing Systems 34, 2021.

[11] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–885

444.

[12] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, 2

ed., MIT Press, Cambridge, MA, 2018.

[13] N. C. Thompson, K. Greenewald, K. Lee, G. F. Manso, The computational

limits of deep learning, https://arxiv.org/abs/2007.05558, 2020.890

[14] J. S. Obando-Ceron, P. S. Castro, Revisiting rainbow: Promoting more

insightful and inclusive deep reinforcement learning research, in: M. Meila,

T. Zhang (Eds.), Proceedings of the 38th International Conference on Ma-

chine Learning, PMLR, 2021, pp. 1373–1383.

[15] C. Browne, Modern techniques for ancient games, in: IEEE Conference on895

Computational Intelligence and Games, IEEE Press, Maastricht, 2018, pp.

490–497.

[16] C. Browne, D. J. N. J. Soemers, É. Piette, M. Stephenson, M. Conrad,

W. Crist, T. Depaulis, E. Duggan, F. Horn, S. Kelk, S. M. Lucas, J. P.

Neto, D. Parlett, A. Saffidine, U. Schädler, J. N. Silva, A. de Voogt,900

M. H. M. Winands, Foundations of Digital Archæoludology, Technical Re-

port, Schloss Dagstuhl Research Meeting, Germany, 2019.

49

https://arxiv.org/abs/2007.05558

[17] Y. Zhang, P. Tiňo, A. Leonardis, K. Tang, A survey on neural network

interpretability, IEEE Transactions on Emerging Topics in Computational

Intelligence 5 (2021) 726–742.905

[18] G. Ras, N. Xie, M. van Gerven, D. Doran, Explainable deep learning: A

field guide for the uninitiated, Journal of Artificial Intelligence Research

73 (2022) 329–397.

[19] C. Browne, D. J. N. J. Soemers, E. Piette, Strategic features for general

games, in: Proceedings of the 2nd Workshop on Knowledge Extraction910

from Games (KEG), 2019, pp. 70–75.

[20] D. J. N. J. Soemers, É. Piette, M. Stephenson, C. Browne, Spatial state-

action features for general games, https://arxiv.org/abs/2201.06401,

2022.

[21] D. J. N. J. Soemers, É. Piette, C. Browne, Biasing MCTS with features for915

general games, in: Proceedings of the 2019 IEEE Congress on Evolutionary

Computation, IEEE, 2019, pp. 442–449.

[22] D. J. N. J. Soemers, É. Piette, M. Stephenson, C. Browne, Manipulating

the distributions of experience used for self-play learning in expert iteration,

in: Proceedings of the 2020 IEEE Conference on Games, IEEE, 2020, pp.920

245–252.

[23] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in:

J. Fürnkranz, T. Scheffer, M. Spiliopoulou (Eds.), Machine Learning:

ECML 2006, volume 4212 of Lecture Notes in Computer Science (LNCS),

Springer, Berlin, Heidelberg, 2006, pp. 282–293.925

[24] R. Coulom, Efficient selectivity and backup operators in Monte-Carlo tree

search, in: H. J. van den Herik, P. Ciancarini, H. H. L. M. Donkers (Eds.),

Computers and Games, volume 4630 of LNCS, Springer Berlin Heidelberg,

2007, pp. 72–83.

50

https://arxiv.org/abs/2201.06401

[25] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlf-930

shagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, A Survey of

Monte Carlo Tree Search Methods, IEEE Transactions on Computational

Intelligence and AI in Games 4 (2012) 1–49.

[26] C. Molnar, G. Casalicchio, B. Bischl, Quantifying model complexity via

functional decomposition for better post-hoc interpretability, in: P. Cellier,935

K. Driessens (Eds.), ECML PKDD 2019: Machine Learning and Knowledge

Discovery in Databases, volume 1167 of Communications in Computer and

Information Science, Springer, Cham, 2020, pp. 193–204.

[27] C. Molnar, Interpretable Machine Learning, Self-published, 2020.

[28] G. Hooker, L. Mentch, S. Zhou, Unrestricted permutation forces extrap-940

olation: variable importance requires at least one more model, or there is

no free variable importance, Statistics and Computing 31 (2021).

[29] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 58 (1996)

267–288.945

[30] M. Stephenson, É. Piette, D. J. N. J. Soemers, C. Browne, Automatic

generation of board game manuals, in: C. Browne, A. Kishimoto, J. Scha-

effer (Eds.), Advances in Computers Games (ACG 2021), volume 13262 of

Lecture Notes in Computer Science, Springer, Cham, 2022, pp. 211–222.

[31] Z. Lin, K.-H. Lam, A. Fern, Contrastive explanations for reinforcement950

learning via embedded self predictions, in: Proceedings of the 2021 Inter-

national Conference on Learning Representations (ICLR), 2021.

[32] H. Baier, M. Kaisers, Explainable search, in: 2020 IJCAI-PRICAI Work-

shop on Explainable Artificial Intelligence, 2020.

[33] H. Baier, M. Kaisers, Towards explainable MCTS, in: 2021 AAAI Work-955

shop on Explainable Agency in AI, 2021.

51

[34] C. R. Silva, M. Bowling, L. H. S. Lelis, Teaching people by justifying

tree search decisions: An empirical study in curling, Journal of Artificial

Intelligence Research 72 (2021) 1083–1102.

[35] A. Pálsson, Y. Björnsson, Evaluating interpretability methods for dnns in960

game-playing agents, in: C. Browne, A. Kishimoto, J. Schaeffer (Eds.),

Advances in Computer Games (ACG 2021), volume 13262 of Lecture Notes

in Computer Science, Springer, Cham, 2022, pp. 71–81.

[36] J. Hilton, N. Cammarata, S. Carter, G. Goh, C. Olah, Understanding rl

vision, Distill (2020). Https://distill.pub/2020/understanding-rl-vision.965

[37] Y. Coppens, K. Efthymiadis, T. Lenaerts, A. Nowé, Distilling deep rein-

forcement learning policies in soft decision trees, in: T. Miller, R. Weber,

D. Magazzeni (Eds.), Proceedings of the IJCAI 2019 Workshop on Explain-

able Artificial Intelligence, 2019, pp. 1–6.

[38] Y. Coppens, D. Steckelmacher, C. M. Jonker, A. Nowé, Synthesising rein-970

forcement learning policies through set-valued inductive rule learning, in:

F. Heintz, M. Milano, B. O’Sullivan (Eds.), Trustworthy AI - Integrating

Learning, Optimization and Reasoning. TAILOR 2020, volume 12641 of

Lecture Notes in Computer Science, Springer, Cham, 2021, pp. 163–179.

[39] S. Deproost, Neural Tree Distillation to Explain Deep Reinforcement Learn-975

ing Policies, Masters thesis, Vrije Universiteit Brussel, Brussels, Belgium,

2021.

[40] G. Liu, O. Schulte, W. Zhu, Q. Li, Toward interpretable deep reinforce-

ment learning with linear model u-trees, in: M. Berlingerio, F. Bonchi,

T. Gärtner, N. Hurley, G. Ifrim (Eds.), Machine Learning and Knowledge980

Discovery in Databases. ECML PKDD 2018, Lecture Notes in Computer

Science, Springer, Cham, 2019, pp. 414–429.

[41] T. McGrath, A. Kapishnikov, N. Tomas̆ev, A. Pearce, D. Hassabis, B. Kim,

52

U. Paquet, V. Kramnik, Acquisition of chess knowledge in AlphaZero,

https://arxiv.org/abs/2111.09259, 2021.985

[42] R. J. Lorentz, T. E. Zosa IV, Machine learning in the game of Break-

through, in: M. H. M. Winands, H. van den Herik, W. A. Kosters (Eds.),

Advances in Computer Games, volume 10664 of Lecture Notes in Computer

Science, Springer, 2017, pp. 140–150.

[43] R. Levinson, R. Snyder, Adaptive pattern-oriented chess, in: Proceedings990

of the 9th National Conference on Artificial Intelligence, volume 2, AAAI,

1991, pp. 601–605.

[44] T. Cazenave, Metarules to improve tactical go knowledge, Information

Sciences 154 (2003) 173–188.

[45] B. Bouzy, Associating domain-dependent knowledge and monte carlo ap-995

proaches within a go program, Information Sciences 175 (2005) 247–257.

[46] E. C. D. van der Werf, M. H. M. Winands, H. J. van den Herik, J. W.

H. M. Uiterwijk, Learning to predict life and death from Go game records,

Information Sciences 175 (2005) 258–272.

[47] R. Coulom, Computing “Elo ratings” of move patterns in the game of Go,1000

ICGA Journal 30 (2007) 198–208.

[48] D. Silver, R. Sutton, M. Müller, Reinforcement learning of local shape in

the game of go, in: Proceedings of the 20th International Joint Conference

on Artificial Intelligence, 2007, pp. 1053–1058.

[49] T. Raiko, J. Peltonen, Application of UCT search to the connection games1005

of Hex, Y, *Star, and Renkula!, in: Proceedings of the Finnish Artificial

Intelligence Conference, 2008, pp. 89–93.

[50] S.-C. Huang, B. Arneson, R. B. Hayward, M. Müller, J. Pawlewicz, Mohex

2.0: A pattern-based MCTS Hex player, Computers and Games. CG 2013

8427 (2014) 60–71.1010

53

https://arxiv.org/abs/2111.09259

[51] C. Browne, É. Piette, M. Stephenson, D. J. N. J. Soemers, General board

geometry, in: C. Browne, A. Kishimoto, J. Schaeffer (Eds.), Advances in

Computer Games (ACG 2021), volume 13262 of Lecture Notes in Computer

Science, Springer, Cham, 2022, pp. 235–246.

[52] C. Browne, M. Stephenson, É. Piette, D. J. N. J. Soemers, A practical1015

introduction to the Ludii general game system, in: T. Cazenave, H. J.

van den Herik, A. Saffidine, I.-C. Wu (Eds.), Advances in Computer Games.

ACG 2019, volume 12516 of Lecture Notes in Computer Science (LNCS),

Springer, Cham, 2020, pp. 167–179.

[53] É. Piette, D. J. N. J. Soemers, M. Stephenson, C. F. Sironi, M. H. M.1020

Winands, C. Browne, Ludii – the ludemic general game system, in: Pro-

ceedings of the 24th European Conference on Artificial Intelligence (ECAI

2020), volume 325, 2020, pp. 411–418.

[54] D. Fotland, Knowledge representation in the many faces of Go, http://

www.smart-games.com/knowpap.txt, 1993.1025

[55] D. Stern, R. Herbrich, T. Graepel, Bayesian pattern ranking for move

prediction in the game of Go, in: W. W. Cohen, A. Moore (Eds.), Pro-

ceedings of the 23rd International Conference on Machine Learning, 2006,

pp. 873–880.

[56] S. Gelly, D. Silver, Combining online and offline knowledge in UCT, in:1030

Proceedings of the 24th International Conference on Machine Learning,

2007, pp. 273–280.

[57] N. Araki, K. Yoshida, Y. Tsuruoka, J. Tsujii, Move prediction in Go with

the maximum entropy method, in: Proceedings of the 2007 IEEE Sympo-

sium on Computational Intelligence and Games, IEEE, 2007, pp. 189–195.1035

[58] M. Buro, From simple features to sophisticated evaluation functions, in:

First International Conference on Computers and Games, 1999, pp. 126–

145.

54

http://www.smart-games.com/knowpap.txt
http://www.smart-games.com/knowpap.txt
http://www.smart-games.com/knowpap.txt

[59] N. R. Sturtevant, A. M. White, Feature construction for reinforcement

learning in Hearts, in: H. J. van den Herik, P. Ciancarini, H. H. L. M.1040

Donkers (Eds.), Computers and Games, volume 4630 of Lecture Notes in

Computer Science, Springer, 2007, pp. 122–134.

[60] P. Skowronski, Y. Björnsson, M. H. M. Winands, Automated discovery

of search-extension features, in: H. J. van den Herik, P. Spronck (Eds.),

Advances in Computer Games, volume 6048 of Lecture Notes in Computer1045

Science, Springer, Berlin, Heidelberg, 2009.

[61] J. Dunn, L. Mingardi, Y. D. Zhuo, Comparing interpretability and explain-

ability for feature selection, https://arxiv.org/abs/2105.05328, 2021.

[62] S. Huang, S. Ontañón, A closer look at invalid action masking in policy

gradient algorithms, https://arxiv.org/abs/2006.14171, 2020.1050

[63] E. Frank, M. Hall, A simple approach to ordinal classification, in:

L. de Raedt, P. Flach (Eds.), European Conference on Machine Learn-

ing, volume 2167 of Lecture Notes in Computer Science, Springer, Berlin,

Heidelberg, 2001, pp. 145–156.

[64] J. R. Quinlan, Induction of decision trees, Machine Learning 1 (1986)1055

81–106.

[65] T. Anthony, Z. Tian, D. Barber, Thinking fast and slow with deep learning

and tree search, in: I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information

Processing Systems 30, Curran Associates, Inc., 2017, pp. 5360–5370.1060

[66] D. J. N. J. Soemers, É. Piette, M. Stephenson, C. Browne, Learning policies

from self-play with policy gradients and mcts value estimates, in: Proceed-

ings of the 2019 IEEE Conference on Games, IEEE, 2019, pp. 329–336.

[67] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, M. G. Bellemare,

Deep reinforcement learning at the edge of the statistical precipice, in:1065

Advances in Neural Information Processing Systems, 2021.

55

https://arxiv.org/abs/2105.05328
https://arxiv.org/abs/2006.14171

[68] F. Lantz, A. Isaksen, A. Jaffe, A. Nealen, J. Togelius, Depth in strategic

games, in: AAAI ’17 Workshop on What’s Next for AI?, AAAI Press, San

Francisco, 2017.

[69] D. E. Knuth, R. W. Moore, An analysis of alpha-beta pruning, Artificial1070

Intelligence 6 (1975) 293–326.

[70] M. Ascher, Mu Torere: An analysis of a Maori game, Mathematics Maga-

zine 60 (1987) 90–100.

[71] C. Browne, Hex Strategy: Making the Right Connections, AK Peters, Mas-

sachusetts, 2000.1075

[72] C. B. Browne, Connection Games: Variations on a Theme, AK Peters,

Massachusetts, 2005.

[73] H. Finnsson, Y. Björnsson, Learning simulation control in general game-

playing agents, in: Proceedings of the 24th AAAI Conference on Artificial

Intelligence, AAAI Press, 2010, pp. 954–959.1080

[74] T. Cazenave, Playout policy adaptation with move features, Theoretical

Computer Science 644 (2016) 43–52.

[75] J.-T. Saito, M. H. M. Winands, J. W. Uiterwijk, Grouping nodes for Monte-

Carlo tree search, in: Computer Games Workshop, 2007, pp. 276–283.

[76] B. E. Childs, J. H. Brodeur, L. Kocsis, Transpositions and move groups in1085

Monte Carlo tree search, in: IEEE Symposium on Computational Intelli-

gence and Games, 2008, pp. 389–395.

[77] G. van Eyck, M. Müller, Revisiting move groups in Monte-Carlo tree search,

in: H. J. van den Herik, A. Plaat (Eds.), Advances in Computer Games,

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp.1090

13–23.

56

	Introduction
	Background
	Related Work on Explainability in Reinforcement Learning and Games
	Markov Decision Processes
	Spatial State-Action Features
	Feature Discovery and Policy Training

	Feature Dependences
	Game-Agnostic Dependences
	Emergent Dependences from Game Rules
	Emergent Dependences from Policies
	Discussion

	Decision Trees of State-Action Features
	Decision Tree Structures
	Logit Regression Trees
	Multiclass State-Action Classification Trees
	Best-Action Classification Trees
	Imbalanced Best-Action Classification Trees

	Training Classification and Regression Trees
	Training Logit Regression Trees
	Training Multiclass State-Action Classification Trees
	Training Best-Action Classification Trees
	Training Imbalanced Best-Action Classification Trees

	Policy Training Objective

	Evaluation
	Results in Small Games
	Results in Other Games
	Biasing MCTS with Trained Features
	Discussion
	Case Studies
	Tic-Tac-Toe
	Hex

	Conclusion

